Theoretical and Applied Genetics

, Volume 61, Issue 1, pp 73–79

Nicotiana chloroplast genome III. Chloroplast DNA evolution

  • S. D. Kung
  • Y. S. Zhu
  • G. F. Shen


Nicotiana chloroplast genomes exhibit a high degree of diversity and a general similarity as revealed by restriction enzyme analysis. This property can be measured accurately by restriction enzymes which generate over 20 fragments. However, the restriction enzymes which generate a small number (about 10) of fragments are extremely useful not only in constructing the restriction maps but also in establishing the sequence of ct-DNA evolution. By using a single enzyme, Sma I, a elimination and sequential gain of its recognition sites during the course of ct-DNA evolution is clearly demonstrated. Thus, a sequence of ct-DNA evolution for many Nicotiana species is formulated. The observed changes are all clustered in one region to form a “hot spot” in the circular molecule of ct-DNA. The mechanisms involved for such alterations are mostly point mutations but inversion and deficiency are also indicated. Since there is a close correlation between the ct-DNA evolution and speciation in Nicotiana a high degree of cooperation and coordination betwen organellar and nuclear genomes is evident.

Key words

Nicotiana Chloroplast DNA Restriction fragments Deletion Evolution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bedbrook, J.R.; Bogorad, L. (1976): Endonuclease recognition sites mapped on zea mays chloroplast DNA. Proc. Natl. Acad. Sci. (USA) 73, 4309–4313Google Scholar
  2. Benzer, S. (1961): On the topography of the genetic fine structure. Proc. Natl. Acad. Sci. (USA) 47, 403–416Google Scholar
  3. Brown, W.M.; George, M. Jr.; Wilson, A.C. (1979): Rapid evolution of animal mitochrondrial DNA. Proc. Natl. Acad. Sci. (USA) 76, 1967–1971Google Scholar
  4. Castora, F.J.; Arnheim, N.; Simpson, M.V. (1980): Mitochondrial DNA polymorphism: evidence that variants detected by restriction enzymes differs in nucleotide sequence rather than in methylation. Proc. Natl. Acad. Sci. (USA) 77, 6415–6419Google Scholar
  5. Chen, K.; Johal, S.; Wildman, S.G. (1976): Role of chloroplast and nuclear DNA genes during evolution of fraction 1 protein. In: Genetics and Biogenesis of Chloroplasts and Mitochondria (eds. Bucher, T.; Neupert, W.; Sebald, W.; Werner, S.), pp 3–11. Amsterdam: Elsevier North Holland Biomed. PressGoogle Scholar
  6. Goodspeed, T.H. (1954): The genus Nicotiana. pp. 283–314 Waltham, Mass.: Chronica BotanicaGoogle Scholar
  7. Gray, J.C.; Kung, S.D.; Wildman, S.G.; Sheen, S.J. (1974): Origin of Nicotiana tabacum L. detected by polypeptide composition of Fraction 1 proteins. Nature 252, 226–227Google Scholar
  8. Helling, R.B.; Goodman, H.W.; Boyer, H.W. (1974): An analysis of endonuclease R EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J. Virology 14, 1235–1241Google Scholar
  9. Herrmann, R.G.; Whitfeld, P.R.; Bottomley, W. (1980): Construction of Sal I/PsT I restriction map of spinach chloroplast DNA using Low-gelling-temperature-agarose electrophoresis. Gene 8, 179–191Google Scholar
  10. Jurgenson, J.E. (1980): Nicotiana tabacum chloroplast DNA: structure and gene content, Ph D. Dissertation, Univ. ArizonaGoogle Scholar
  11. Jurgenson, J.E.; Bourque, D.P. (1981): Mapping of rRNA genes in an inverted repeat in Nicotiana tabacum chloroplast DNA. Nucleic Acids Res. 8, 3505–3516Google Scholar
  12. Kolodner, R.; Tewari, K.K. (1975): The molecular size and conformation of chloroplast DNA from higher plants. Biochim. Biophys. Acta 402, 372–390Google Scholar
  13. Kung, S.D.: (1976). Tobacco fraction 1 protein: a unique genetic marker. Science 191, 429–434Google Scholar
  14. Kung, S.D. (1977): Expression of chloroplast genomes in higher plants. Ann. Rev. Plant Physiol. 28, 401–437Google Scholar
  15. Kung, S.D.; Lee, C.L.; Wood, D.D.; Moscarello, M.M. (1977): Evolutionary conservation of chloroplast genes coding for the large subunit of fraction 1 protein. Plant Physiol. 60, 89–94Google Scholar
  16. Kung, S.D.; Zhu, Y.S.; Chen K.; Shen, G.F.; Sisson V. (1981): Nicotiana chloroplast genome II. Chloroplast DNA alteration. Mol. Gen. Genet. 183, 20–24Google Scholar
  17. Rhodes, P.R.; Zhu, Y.S.; Kung, S.D. (1981): Nicotiana chloroplast genome I. chloroplast DNA diversity. Mol. Gen. Genet. 182, 106–111Google Scholar
  18. Rhodes, P.R.; Kung, S.D. (1981): Chloroplast DNA isolation: Purity achieved without nuclease digestion. Can. J. Biochem. (in press)Google Scholar
  19. Scowcroft, W.R. (1979): Nucleotide polymorphism in chloroplast DNA of Nicotiana debneyi, Theor. Appl. Genet. 55, 133–137Google Scholar
  20. Sugiura, M.; Kusuda, J. (1979): Molecular cloning of tobacco chloroplast ribosomal RNA genes. Mol. Gen. Genet. 172, 137–141Google Scholar
  21. Wildman, S.G.; Lu-Liao, C.; Wong-Staal, F. (1973): Maternal inheritance, cytology, and macromolecular composition of defective chloroplasts in variegated mutant of Nicotiana tabacum. Planta 113, 293–312Google Scholar
  22. Walbot, V. (1977): Use of silica sol step gradients to prepare bundle sheath and mesophyll chloroplasts from Panicum maximum. Plant Physiol. 60, 102–108Google Scholar

Copyright information

© Springer-Verlag 1982

Authors and Affiliations

  • S. D. Kung
    • 1
  • Y. S. Zhu
    • 1
  • G. F. Shen
    • 1
  1. 1.Department of Biological SciencesUniversity of Maryland, Baltimore County (UMBC)CatonsvilleUSA

Personalised recommendations