Advertisement

Molecular and General Genetics MGG

, Volume 219, Issue 1–2, pp 289–298 | Cite as

Common nodABC genes in Nod locus 1 of Azorhizobium caulinodans: Nucleotide sequence and plant-inducible expression

  • K. Goethals
  • M. Gao
  • K. Tomekpe
  • M. Van Montagu
  • M. Holsters
Article

Summary

Azorhizobium caulinodans strain ORS571 induces nitrogen-fixing nodules on roots and stem-located root primordia of Sesbania rostrata. Two essential Nod loci have been previously identified in the bacterial genome, one of which (Nod locus 1) shows weak homology with the common nodC gene of Rhizobium mehloti. Here we present the nucleotide sequence of this region and show that it contains three contiguous open reading frames (ORFA, ORFB and ORFC) that are related to the nodABC genes of Rhizobium and Bradyrhizobium species. ORFC is followed by a fourth (ORF4) and probably a fifth (ORF5) open reading frame. ORF4 may be analogous to the nod[ gene of R. leguminosarum, whereas ORF5 could be similar to the rhizobial nodF genes. Coordinated expression of this set of five genes seems likely from the sequence organization. There is no typical nod promoter consensus sequence (nod box) in the region upstream of the first gene (ORFA) and there is no nodD-like gene. LacZ fusions constructed with ORFA, ORFB, ORFC, and ORF4 showed inducible β-galactosidase expression in the presence of S. rostrata seedlings as well as around stem-located root primordia. Among a series of phenolic compounds tested, the flavanone naringenin was the most efficient inducer of the expression of this ORS571 nod gene cluster.

Key words

Azorhizobium caulinodans Common nod genes DNA sequencing Plant-inducible expression Sesbania rostrata nodulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boyer HW, Roulland-Dussoix D (1969) A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41:459–472Google Scholar
  2. Casadaban MJ (1975) Fusion of the Escherichia coli lac genes to the ara promoter: a general technique using bacteriophage Mu-1 insertions. Proc Natl Acad Sci USA 72:809–813Google Scholar
  3. Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207Google Scholar
  4. Debellé F, Sharma SB (1986) Nucleotide sequence of Rhizobium meliloti RCR2011 genes involved in host specificity of modulation. Nucleic Acids Res 14:7453–7462Google Scholar
  5. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci USA 77:7347–7351Google Scholar
  6. Djordjevic MA, Gabriel DW, Rolfe BG (1987) Rhizobium — the refined parasite of legumes. Annu Rev Phytopathol 25:145–168Google Scholar
  7. Dreyfus B, Dommergues YR (1981) Nitrogen fixing nodules induced by Rhizobium on the stem of the tropical legume Sesbania rostrata. FEMS Microbiol Lett 10:313–317Google Scholar
  8. Dreyfus B, Alazard D, Dommergues YR (1984) Stem-nodulating Rhizobia. In: Klug MG, Reddy CE (eds) Current perspectives of microbial ecology. American Society for Microbiology, Washington DC, pp 161–169Google Scholar
  9. Dreyfus B, Garcia JL, Gillis M (1988) Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. Int J Syst Bacteriol 38:89–98Google Scholar
  10. Egelhoff TT, Fisher RF, Jacobs TW, Mulligan JT, Long SR (1985) Nucleotide sequence of Rhizobium meliloti 1021 nodulation genes: nodD is read divergently from nodABC. DNA 4:241–248Google Scholar
  11. Evans IJ, Downie JA (1986) The nodI gene product of Rhizobium leguminosarum is closely related to ATP-binding bacterial transport proteins; nucleotide sequence analysis of the nodI and nodJ genes. Gene 43:95–101Google Scholar
  12. Fisher RF, Egelhoff TT, Mulligan JT, Long SR (1988) Specific binding of proteins from Rhizobium meliloti cell-free extracts containing NodD to DNA sequences upstream of inducible nodulation genes. Genes Devel 2:282–293Google Scholar
  13. Göttfert M, Lamb JW, Gasser R, Semenza J, Hennecke H (1989) Mutational analysis of the Bradyrhizobium japonicum common nod genes and further nod box-linked genomic DNA regions. Mol Gen Genet 215:407–415Google Scholar
  14. Heffron F, Bedinger P, Champoux JJ, Falkow S (1977) Deletions affecting the transposition of an antibiotic resistance gene. Proc Natl Acad Sci USA 74:702–706Google Scholar
  15. Hopp TP, Woods KR (1981) Prediction of protein antigenic determinants from amino acid sequences. Proc Natl Acad Sci USA 78:3824–3828PubMedGoogle Scholar
  16. Horvath B, Bachem CWB, Schell J, Kondorosi A (1987) Host-specific regulation of nodulation genes in Rhizobium is mediated by a plant-signal, interacting with the nodD gene product. EMBO J 6:841–848Google Scholar
  17. Jacobs TW, Egelhoff TT, Long SR (1985) Physical and genetic map of a Rhizobium meliloti nodulation gene region and nucleotide sequence of nodC. J Bacteriol 162:469–476Google Scholar
  18. John M, Schmidt J, Wieneke U, Krussmann H-D, Schell J (1988) Transmembrane orientation and receptor-like structure of the Rhizobium meliloti common nodulation protein NodC. EMBO J 7:583–588Google Scholar
  19. Long SR (1989) Rhizobium-legume nodulation: life together in the underground. Cell 56:203–214Google Scholar
  20. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, New York, p 545Google Scholar
  21. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, New York, p 466Google Scholar
  22. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti nodC expression by plant exudate requires nodD. Proc Natl Acad Sci USA 82:6609–6613Google Scholar
  23. Nieuwkoop AJ, Banfalvi ZS, Deshmane N, Gerhold D, Schell MG, Sirotkin KM, Stacey G (1987) A locus encoding host range is linked to the common nodulation genes of Bradyrhizobium japonicum. J Bacteriol 169:2631–2638Google Scholar
  24. Ratet P, Richaud F (1986) Construction and uses of a new transposable element whose insertion is able to produce gene fusions with the neomycin-phosphotransferase-coding region of Tn903. Gene 42:185–192Google Scholar
  25. Ratet P, Schell J, de Bruijn FJ (1988) Mini-Mulac transposons with broad-host-range origins of conjugal transfer and replication designed for gene regulation studies in Rhizobiaceae. Gene 63:41–52Google Scholar
  26. Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635Google Scholar
  27. Rossen L, Johnston AWB, Downie JA (1984) DNA sequence of the Rhizobium leguminosarum nodulation genes nodAB and C required for root hair curling. Nucleic Acids Res 12:9497–9508Google Scholar
  28. Rossen L, Shearman CA, Johnston AWB, Downie JA (1985) The nodD gene of Rhizobium leguminosarum is autoregulatory and in the presence of plant exudate induces the nodA, B, C, genes. EMBO J 4:3369–3373Google Scholar
  29. Rostas K, Kondorosi E, Horvath B, Simoncsits A, Kondorosi A (1986) Conservation of extended promoter regions of modulation genes in Rhizobium. Proc Natl Acad Sci USA 83:1757–1761Google Scholar
  30. Schmidt J, Wingender R, John M, Wieneke U, Schell J (1988) Rhizobium meliloti nodA and nodB genes are involved in generating compounds that stimulate mitosis of plant cells. Proc Natl Acad Sci USA 85:8578–8582Google Scholar
  31. Schofield PR, Watson JM (1986) DNA sequence of Rhizobium trifolii nodulation genes reveals a reiterated and potentially regulatory sequence preceding nodABC and nodFE. Nucleic Acids Res 14:2891–2903Google Scholar
  32. Scott KF (1986) Conserved nodulation genes from the non-legume symbiont Bradyrhizobium sp. (Parasponia). Nucleic Acids Res 14:2905–2919Google Scholar
  33. Shearman CA, Rossen L, Johnston AWB, Downie JA (1986) The Rhizobium leguminosarum nodulation gene nodF encodes a polypeptide similar to acyl-carrier protein and is regulated by nodD plus a factor in pea root exudate. EMBO J 5:647–652Google Scholar
  34. Stachel S, An G, Flores C, Nester EW (1985) A Tn3 lacZ transposon for the random generation of β-galactosidase gene fusions: applications to the analysis of gene expression in Agrobacterium. EMBO J 4:891–898Google Scholar
  35. Stormo GD, Schneider TD, Gold LM (1982) Characterization of translational initiation sites in E. coli. Nucleic Acids Res 10:2971–2996Google Scholar
  36. Török I, Kondorosi E, Stepkowski T, Pósfai J, Kondorosi A (1984) Nucleotide sequence of Rhizobium meliloti nodulation genes. Nucleic Acids Res 12:9509–9522Google Scholar
  37. Van den Eede G, Dreyfus B, Goethals K, Van Montagu M, Holsters M (1987) Identification and cloning of nodulation genes from the stem-nodulating bacterium ORS571. Mol Gen Genet 206:291–299Google Scholar
  38. Walker JE, Saraste M, Runswick MJ, Gay NJ (1982) Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • K. Goethals
    • 1
  • M. Gao
    • 1
  • K. Tomekpe
    • 1
  • M. Van Montagu
    • 1
  • M. Holsters
    • 1
  1. 1.Laboratorium voor GeneticaRijksuniversiteit GentGentBelgium

Personalised recommendations