Molecular and General Genetics MGG

, Volume 219, Issue 1–2, pp 161–167 | Cite as

Identification of a gene conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae

  • Akihito Kamizono
  • Masafumi Nishizawa
  • Yutaka Teranishi
  • Kousaku Murata
  • Akira Kimura


A DNA fragment conferring resistance to zinc and cadmium ions in the yeast Saccharomyces cerevisiae was isolated from a library of yeast genomic DNA. Its nucleotide sequence revealed the presence of a single open reading frame (ORF; 1326 bp) having the potential to encode a protein of 442 amino acid residues (molecular mass of 48.3 kDa). A frameshift mutation introduced within the ORF abolished resistance to heavy metal ions, indicating the ORF is required for resistance. Therefore, we termed it the ZRC1 (zinc resistance conferring) gene. The deduced amino acid sequence of the gene product predicts a rather hydrophobic protein with six possible membrane-spanning regions. While multiple copies of the ZRC1 gene enable yeast cells to grow in the presence of 40 mM Zn2+, a level at which wild-type cells cannot survive, the disruption of the chromosomal ZRC1 locus, though not a lethal event, makes cells more sensitive to zinc ions than are wild-type cells.

Key words

Saccharomyces cerevisiae Heavy metal resistance DNA sequence Membrane 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adzuma K, Ogawa T, Ogawa H (1984) Primary structure of the RAD52 gene in S. cerevisiae. Mol Cell Biol 4:2735–2744Google Scholar
  2. Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364Google Scholar
  3. Butt TR, Sternberg E, Herd J, Crooke ST (1984) Cloning and expression of a yeast copper metallothionein gene. Gene 27:23–33Google Scholar
  4. Byrd J, Berger RM, McMillin DR, Wright CF, Hamer D, Winge DR (1988) Characterization of the copper-thiolate cluster in yeast metallothionein and two truncated mutants. J Biol Chem 263:6688–6694Google Scholar
  5. Ecker DJ, Butt TR, Sternberg EJ, Neeper MP, Debouck C, Gorman JA, Crooke ST (1986) Yeast metallothionein function in metal detoxification. J Biol Chem 261:16895–16900Google Scholar
  6. Evans RM, Hollenberg SM (1988) Zinc fingers: gilt by association. Cell 52:1–3Google Scholar
  7. Feinberg AP, Vogelstein B (1983) A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132:6–13PubMedGoogle Scholar
  8. Fogel S, Welch JW (1982) Tandem gene amplification mediates copper resistance in yeast. Proc Natl Acad Sci USA 79:5342–5346Google Scholar
  9. Fogel S, Welch JW, Karin M (1983) Gene amplification in yeast: CUP1 copy number regulates copper resistance. Curr Genet 7:1–9Google Scholar
  10. Fukuda Y, Saikusa T, Watanabe K, Shimosaka M, Murata K, Kimura A (1986) Cloning of genes enhancing the resistance of Saccharomyces cerevisiae to zinc and cadmium ions. Agric Biol Chem 50:1341–1343Google Scholar
  11. Furst P, Hu S, Hackett R, Hamer D (1988) Copper activates metallothionein gene transcription by altering the conformation of a specific DNA binding protein. Cell 55:705–717CrossRefPubMedGoogle Scholar
  12. Grill E, Winnacker EL, Zenk MH (1986) Synthesis of seven different homologous phytochelatins in metal exposed Schizosaccharomyces pombe cells. FEBS Lett 197:115–120Google Scholar
  13. Gros P, Croop J, Housman D (1986) Mammalian multidrug resistance gene: complete eDNA sequence indicates strong homology to bacterial transport protein. Cell 47:371–380Google Scholar
  14. Hartman H, Weser W (1985) Cobalt-(cystein)4 tetrahedra in yeast cobalt(II) thionein. Biochem Biophys Res Commun 132:277–283Google Scholar
  15. Henikoff S (1984) Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359Google Scholar
  16. Ikemura T (1982) Correlation between the abundance of yeast transfer RNAs and the occurrence of the respective codons in protein genes. J Mol Biol 158:573–597Google Scholar
  17. Inouye S, Nakazawa A, Nakazawa T (1981) Molecular cloning of TOL genes, xylB and xylE in Escherichia coli. J Bacteriol 145:1137–1143Google Scholar
  18. Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact cells treated with alkali cations. J Bacteriol 153:163–168Google Scholar
  19. Jones JS, Weber S, Prakash L (1988) The Saccharomyces cerevisiae RAD18 gene encodes a protein that contains potential zinc finger domains for nucleic acid binding and a putative nucleotide binding sequence. Nucleic Acids Res 16:7119–7131Google Scholar
  20. Kanehisa M (1982) Los Alamos sequence analysis package for nucleic acids and proteins. Nucleic Acids Res 10:183–196Google Scholar
  21. Klein P, Kanehisa M, Delisi C (1985) The detection and classification of membrane spanning proteins. Biochim Biophys Acta 815:468–475Google Scholar
  22. Kondo N, Isobe M, Imai K, Goto J, Murasugi A, Hayashi Y (1983) Structure of cadystin, the unit-peptide of cadmium-binding peptides induced in a fission yeast Schizosaccharomyces pombe. Tetrahedron Lett 24:925–928Google Scholar
  23. Kornfeld K, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharide. Annu Rev Biochem 54:631–664Google Scholar
  24. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132PubMedGoogle Scholar
  25. Lerch K (1980) Copper metallothionein, a copper-binding protein from Neurospora crssa. Nature 284:368–370Google Scholar
  26. Lipman DJ, Pearson WR (1985) Rapid and sensitive protein similarity searches. Science 227:1435–1441Google Scholar
  27. Mandel M, Higa A (1970) Calcium-dependent bacteriophage DNA infection. J Mol Biol 53:159–162Google Scholar
  28. Maniatis TE, Fritsch F, Sambrook J (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  29. McClanahan T, McEntee K (1984) Specific transcripts are elevated in Saccharomyces cerevisiae in response to DNA damage. Mol Cell Biol 4:2356–2363Google Scholar
  30. McClanahan T, McEntee K (1986) DNA damage and heat shock dually regulate genes in Saccharomyces cerevisiae. Mol Cell Biol 6:90–96Google Scholar
  31. Mehra RK, Tarbet EB, Gray WR, Winge DR (1988) Metal-specific synthesis of two metallothioneins and γ-glutamyl peptides in Candida glabrata. Proc Natl Acad Sci USA 85: 8815–8819Google Scholar
  32. Murasugi A, Wada C, Hayashi Y (1985) Cadmium-binding peptide induced in fission yeast Schizosaccharomyces pombe. J Biochem 96:1561–1564Google Scholar
  33. Murata K, Fukuda Y, Shimosaka M, Watanabe K, Saikusa T, Kimura A (1985) Phenotypic character of the methylglyoxal resistance gene in Saccharomyces cerevisiae: expression in E. coli and application to breeding wild-type yeast strains. Appl Environ Microbiol 50:1200–1207Google Scholar
  34. Nishizawa M, Araki R, Teranishi Y (1989) Identification of an upstream activating sequence and an upstream repressible sequence of pyruvate kinase gene of the yeast Saccharomyces cerevisiae. Mol Cell Biol 9:442–451Google Scholar
  35. Ostrowski J, Burdzy GJ, Kredich NM (1987) DNA sequence of the cysB regions of Salmonella typhimurium and E. coli. J Biol Chem 262:5999–6005Google Scholar
  36. Perozzi G, Prakash S (1986) RAD7 gene of S. cerevisiae: transcripts, nucleotide sequence analysis, and functional relationship between the RAD7 and RAD23 gene products. Mol Cell Biol 6:1497–1507Google Scholar
  37. Perron CY, Vieira J, Messing J (1985) Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mpl8 and pUC19 vectors. Gene 33:103–119CrossRefPubMedGoogle Scholar
  38. Reynolds P, Higins DR, Prakash L, Prakash S (1985a) The nucleotide sequence of the RAD3 gene of S. cerevisiae: a potential adenine nucleotide binding amino acid sequence and a nonessential acidic calboxyl terminal region. Nucleic Acids Res 13:2357–2372Google Scholar
  39. Reynolds P, Weber S, Prakash L (1985b) RAD6 gene of S. cerevisiae encodes a protein containing a tract of 13 consecutive aspartates. Proc Natl Acad Sci USA 82:168–172Google Scholar
  40. Rine J, Hansen W, Hardeman E, Davis RW (1983) Targeted selection of recombinant clones through gene dosage effects. Proc Natl Acad Sci USA 80:6750–6754Google Scholar
  41. Rothstein R (1983) One-step gene disruption in yeast. Methods Enzymol 101:202–211Google Scholar
  42. Ruby SW, Szostak JW (1985) Specific Saccharomyces cerevisiae genes are expressed in response to DNA-damage agents. Mol Cell Biol 5:75–84Google Scholar
  43. Sanger F, Micklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  44. Shatzman AR, Kosman DJ (1979) Characterization of two copperbinding components of the fungus Dactylium dendroides. Arch Biochem Biophys 194:226–235Google Scholar
  45. Sherman F, Fink GR, Hicks JB (1986) Laboratory course manual for methods in yeast genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NYGoogle Scholar
  46. Southern EM (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 8:503–517PubMedGoogle Scholar
  47. Struhl K, Davis RW (1981) Transcription of the HIS3 gene region in Saccharomyces cerevisiae. J Mol Biol 152:535–552Google Scholar
  48. Vieira J, Messing J (1987) Production of single-stranded plasmid DNA. Methods Enzymol 153:3–11Google Scholar
  49. Weiss WA, Friedberg EC (1985) Molecular cloning and characterization of the yeast RAD10 gene and expression of RAD10 protein in E. coli. EMBO J 4:1575–1582Google Scholar
  50. Winge DR, Nielson RB, Gray WR, Hamer DH (1985) Yeast metallothionein sequence and metal-binding properties. J Biol Chem 260:14464–14470Google Scholar
  51. Yang E, Friedberg EC (1984) Molecular cloning and nucleotide sequence analysis of the S. cerevisiae RAD1 gene. Mol Cell Biol 4:2161–2169Google Scholar
  52. Zaret KS, Sherman F (1982) DNA sequence required for efficient transcription termination in yeast. Cell 28:563–573Google Scholar
  53. Zukowski MM, Gaffney DF, Speck D, Kauffman A, Findeli A, Wisecup A, Lecocq JP (1983) Chromogenic identification of genetic regulatory signals in Bacillus subtilis based on expression of a cloned Pseudomonas gene. Proc Natl Acad Sci USA 80:1101–1105Google Scholar

Copyright information

© Springer-Vertag 1989

Authors and Affiliations

  • Akihito Kamizono
    • 1
  • Masafumi Nishizawa
    • 1
  • Yutaka Teranishi
    • 1
  • Kousaku Murata
    • 2
  • Akira Kimura
    • 2
  1. 1.Biosciences Laboratory, Research CenterMitsubishi Kasei CorporationMidori-ku, YokohamaJapan
  2. 2.Research Institute for Food ScienceKyoto UniversityUji, KyotoJapan

Personalised recommendations