Advertisement

Acta Informatica

, Volume 10, Issue 1, pp 85–94 | Cite as

Information management in context trees

  • Carlo Montangero
  • Giuliano Pacini
  • Maria Simi
  • Franco Turini
Article

Summary

Information management in context trees involves three principal problems: retrieval, updating and garbage collection. These problems are discussed in the paper, and solutions are proposed and motivated. A list organization and relative algorithms to implement context trees are presented. Finally, experimental results are reported about the behaviour of a system which exploits context trees.

Keywords

Information System Operating System Data Structure Communication Network Information Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abrial, J.R.: Data semantics. In: Data base management (J.W. Kimbie, K.L. Koffeman, eds.). Amsterdam: North Holland 1974Google Scholar
  2. 2.
    Bobrow, D.G., Raphael, B.: New programming languages for Artificial Intelligence Research. Comput. Surveys 6, 153–174 (1974)Google Scholar
  3. 3.
    Davies, D., Julian, M.: Popler 1.5 Reference Manual. Univ. of Edinburgh, TPU Report 1, May 1973Google Scholar
  4. 4.
    Hewitt, C.: Procedural embedding of knowledge in PLANNER. Proc. 2nd Int. J. Conf. on Artificial Intelligence, London, pp. 167–182, 1971Google Scholar
  5. 5.
    Montangero, C., Pacini, G., Turini, F.: MAGMA-Lisp: a machine language for Artificial Intelligence. Proc. 4th Int. J. Conf. on Artificial Intelligence, Tbilisi, pp. 556–561, 1975Google Scholar
  6. 6.
    Montangero, C., Pacini, G., Turini, F.: Two-level control structure for nondeterministic programming. Comm. ACM 20, 725–730 (1977)Google Scholar
  7. 7.
    Reboh, R., Sacerdoti, E.: A preliminary QLISP manual. Stanford Research Institute, Artificial Intelligence Center, Tech. Note 81, August 1973Google Scholar
  8. 8.
    Rulifson, J.F., Waldinger, R.J., Derksen, J.A.: QA4: a procedural calculus for intuitive reasoning. Stanford Research Institute, Artificial Intelligence Center, Tech. Note 73, November 1973Google Scholar
  9. 9.
    Smith, D.C., Enea, H.J.: Backtracking in MLISP2. Proc. 3rd Int. J. Conf. on Artificial Intelligence, Stanford, pp. 671–685, 1973Google Scholar
  10. 10.
    Sussman, G.J., McDermott, D.V.: From PLANNER to CONNIVER, a genetic approach. Proc. AFIPS FJCC 72, Vol. 41, Pt. II, AFIPS Press, Montvale, N.J., pp. 1171–1179, 1972Google Scholar
  11. 11.
    Wegbreit, B.: Retrieval from context trees. Information Processing Lett. 3, 119–120 (1975)Google Scholar
  12. 12.
    Wegbreit, B.: Faster retrieval from context trees. Comm. ACM 19, 526–529 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Carlo Montangero
    • 1
  • Giuliano Pacini
    • 1
  • Maria Simi
    • 1
  • Franco Turini
  1. 1.Istituto di Scienze dell' InformazioneUniversità di PisaPisaItaly

Personalised recommendations