Advertisement

Biology and Fertility of Soils

, Volume 6, Issue 3, pp 237–251 | Cite as

Earthworm activities and the soil system

  • P. Lavelle
Article

Summary

Earthworms find in soil the energy, nutrient resources, water and buffered climatic conditions that they need. According to the food resource they exploit and the general environmental conditions, earthworms can be grouped into different functional categories which differ essentially in morphology, size, pigmentation, distribution in the soil profile, ability to dig galleries and produce surface casts, demographic profiles and relationships with the soil microflora. Soil characteristics are both the determinant and the consequence of earthworm activities, since these animals greatly influence the functioning of the soil system. When present, they build and maintain the soil structure and take an active part in energy and nutrient cycling through the selective activation of both mineralization and humification processes. By their physical activities and resultant chemical effects, earthworms promote short and rapid cycles of nutrients and assimilable carbohydrates. Thus earthworms represent a key component in the biological strategies of nutrient cycling in soils and the structure of their communities gives a clear indication of the type of soil system that they inhabit.

Key words

Earthworm communities Soil structure Nutrient cycling Soil organic matter Microbial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal G, Rao K, Negi L (1958) Influence of certain species of earthworms on the structure of some hill soils. Curr Sci 27:213Google Scholar
  2. Anderson JM, Swift MJ (1983) Decomposition in tropical forests. In: Sutton SL, Whitmore TC, Chedwick LC (eds). The tropical rainforest. Blackwell, Oxford, pp 287–309Google Scholar
  3. Atlavinyte O, Pociene C (1973) The effect of earthworms and their activity on the amount of algae in the soil. Pedobiologia 13:445–455Google Scholar
  4. Barois I, Lavelle P (1986) Changes in respiration rate and some physicochemical properties of a tropical soil during transit through Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta). Soil Biol Biochem 18:539–541Google Scholar
  5. Barois I, Verdier B, Kaiser P, Mariotti A, Rangel P, Lavelle P (1987) Influence of the tropical earthworm Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) on the fixation and mineralization of nitrogen. In: Bonvicini Pagliai, Omodes P (eds) On earthworms. Mucchi, Modena, pp 151–158Google Scholar
  6. Bolton PJ, Phillipson J (1976) Burrowing, feeding, egestion and energy budgets of A. rosea (Savigny) (Lumbricidae). Oecologia (Berlin) 23:225–245Google Scholar
  7. Bouché MB (1977) Strategies Lombriciennes. Ecol Bull (Stockh) 25:122–132Google Scholar
  8. Bouché MB (1983) The establishment of earthworm communities. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 431–448Google Scholar
  9. Bouché MB, Rafidison Z, Toutain F (1983) Etude de l'alimentation et du brassage pédo-intestinal du Lombricien Nicodrilus velox (Annelida, Lumbricidae) par l'analyse élémentaire. Rev Ecol Biol Sol 20:49–75Google Scholar
  10. Brusewitz G (1959) Untersuchungen über den Einfluss des Regenwurms auf Zahl, Art und Leistungen von Mikroorganismen in Boden. Arch Mikrobiol 33:52–82Google Scholar
  11. Coleman DC, Reid CPP, Cole CV (1983) Biological strategies of nutrient cycling in soil systems. Adv Ecol Res 13:1–55Google Scholar
  12. Collins NM (1980) The distribution of soil macrofauna on the west ridge of Gunung Mulu, Sarawak. Oecologia 44:263–275Google Scholar
  13. Cook A (1983) The effects of fungi on food selection by Lumbricus terrestris L. In: Satchele JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 365–373Google Scholar
  14. Cuendet G (1984) Les peuplements Lombriciens des pelouses alpines du Mount La Schera (Parc national suisse). Rev Suisse Zool 91:217–228Google Scholar
  15. Curry JP, Cotton DCF (1983) Earthworms and land reclamation. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 215–228Google Scholar
  16. Darwin CR (1881) The formation of vegetable mould through the action of worms, with observations on their habits. Murray, LondonGoogle Scholar
  17. Dash MC, Patra VC, Thambi AV (1974) Primary production of plant material and secondary production of Oligochetes in a tropical grassland of Southern Orissa, India. Trop Ecol 15:16–21Google Scholar
  18. Dash MC, Senapati BK, Mishra CC (1980)Nematode feeding by tropical earthworms. Oikos 32:322–325Google Scholar
  19. Dietz S, Bottner P (1981) Etude par autoradiographie de l'enfouissement d'une litière marquée au 14C en milieu herbacé. In: Colloq Int du CNRS 303, Migrations organo-minerales dans les sols tempérés CNRS, Paris, pp 125 -132Google Scholar
  20. Douglas JT, Gross MJ, Hill D (1980) Measurement of pore characteristics in a clay soil under ploughing and direct drilling, including use of a radioactive tracer (144Ce) technique. Soil Till Res 1:11–18Google Scholar
  21. Edwards CA, Lofty JR (1972) Biology of earthworms. Chapman and Hall, LondonGoogle Scholar
  22. Ferriere G (1980) Fonctions des Lombriciens VII: Une méthode d'analyse de la matière organique végétale ingérée. Pedobiologia 20:263–273Google Scholar
  23. Ferriere G, Bouché MB (1985) Première mesure écophysiologique d'un débit d'élément dans un compartiment endogé: Le débit d'azote de Nicodrilus longus (Ude) (Lumbricidae Oligochaeta) dans la prairie de Citeaux. CR Acad Sci 301:789–794Google Scholar
  24. Fragoso C (1985) Ecologia general de las Lombrices terrestres (Oligochaeta: Annelida) de la région Boca del Chajul, Selva Lacandona (Chiapas, Mexico). PhD Thesis, UNAM, MexicoGoogle Scholar
  25. Fragoso C, Lavelle P (1987) The earthworm communities of a tropical rainforest from Mexico (Chajul, Chiapas). In: Bonvicini Pagliai, Omodeo P (eds) On earthworms. Mucchi, Modena, pp 281–295Google Scholar
  26. Frenot Y (1985) Etude de Fintroduction accidentelle de Denbrobaena rubida tenuis (Oligochaeta, Lumbricidae) à l'île de la Possession. Bull Ecol 16:47–54Google Scholar
  27. Gerard BM (1967) Factors affecting earthworms in pastures. J Anim Ecol 36:235–252Google Scholar
  28. Graff O (1953) Die Regenwürmer Deutschlands. Schr Forsch Landwirtsch Braunschweig Volkenrode 7:1–81Google Scholar
  29. Graff O (1971) Stickstoff, Phosphor und Kalium in der Regenwurmlösung auf der Wiesenversuchsfläche des Sollingprojekts. Ann Zool Ecol Anim, Spec Publ 4:503–512Google Scholar
  30. Hamilton WE, Vimmersted JP (1980) Earthworms on forested spoil banks. In: Dindal DL (ed) Soil biology as related to land use practices. EPA, Washington DC, pp 409–417Google Scholar
  31. Hoeksema KJ, Jongerius A (1959) On the influence of earthworms on the soil structure in mulched orchards. In: Proc Int Symp Soil Structure, Ghent 1958, pp 188–194Google Scholar
  32. Kanyonyo KK (1984) Ecologie alimentaire du Ver de terre détritivore Millsonia lamtoiana (Acanthodrilidae: Oligochète) dans la savane de Lamto (Côte d'Ivoire). PhD dissertation, University of ParisGoogle Scholar
  33. Kaplan DL, Hartenstein R, Neuhauser EF, Malecki MR (1980) Physicochemical requirements in the environment of the earthworm Eisenia fetida. Soil Biol Biochem 12:347–352Google Scholar
  34. Khalaf El-Duweini A, Ghabbour SI (1965) Temperature relations of three Egyptian oligochete species. Oikos 16:9–15Google Scholar
  35. Kobel-Lamparski A, Lamparski F (1987) Burrow constructions during the development of Lumbricus badensis individuals. Biol Fertil Soils 3:125–129Google Scholar
  36. Kollmannsperger F (1956) Lumbricidae of humid and arid regions and their effect on soil fertility. In: 6th Congr Int Sci Sol, pp 293–297Google Scholar
  37. Kretzschmar A (1982) Description des galeries des Vers de terre et variation saisonnière des réseaux (observations en conditions naturelle). Rev Ecol Biol Sol 19:579–591Google Scholar
  38. Kretzschmar A (1983) Soil transport as an homeostatic mechanism for stabilizing the earthworm environment. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 59–66Google Scholar
  39. Kretzschmar A (1987) Caractérisation microscopique de l'activité des Lombriciens endogés. In: Fedoroff N, Bresson LM, Courty MA (eds) Micromorphologie du sol, AFES, Paris, pp 325–330Google Scholar
  40. Kubiena WL (1953) The soils of Europe. Murby, LondonGoogle Scholar
  41. Lavelle P (1977) Bilan énergétique des populations naturelles du Ver de terre géophage Millsonia anomala (Acanthodrilidae: Oligochètes) dans la savane de Lamto (Côte d'Ivoire). Geo-EcoTrop 1:149–157Google Scholar
  42. Lavelle P (1978) Les Vers de terre de la savane de Lamto (Côte d'Ivoire): Peuplements, populations et fonctions dans l'éco-systéme. Doctoral Thesis, Univ Paris, VI Publ Lab Zool, ENS 12Google Scholar
  43. Lavelle P (1981a) Un Ver de terre carnivore des savanes de la moyenne Côte d'Ivoire Agastrodrilus dominicae nov. sp. (Oligochetes, Megascolecidae). Rev Ecol Biolol 18:253–258Google Scholar
  44. Lavelle P (1981b) Stratégies de reproduction chez les Vers de terre. Acta Oecol Gen 2:117–133Google Scholar
  45. Lavelle P (1983a) The structure of earthworm communities. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 449–465Google Scholar
  46. Lavelle P (1983b) The soil fauna of tropical savannas II: The Earthworms. In: Bourliére F (ed) Tropical savannas. Elsevier, Amsterdam, London, 485–504Google Scholar
  47. Lavelle P (1984) The soil system in the humid tropics. Biol Int 9:2–17Google Scholar
  48. Lavelle P (1985) Les systèmes d'intèractions Ressources — Populations — Environnement. Bull Ecol 6:1–8Google Scholar
  49. Lavelle P, Kohlmann B (1984) Etude quantitative de la macrofaune du sol dans une forêt tropical humide du Mexique (Bonampak, Chiapas). Pedobiologia 27:377–393Google Scholar
  50. Lavelle P, Meyer JA (1983) Allez-les-Vers, a simulation model of dynamics and effect on soil of populations of Millsonia anomala (Oligochaeta — Megascolecidae) In: Lebrun Ph, André AM, de Medts A, Gregoire-Wibo C, Wauthy G (eds) New trends in soil biology. Dieu Brichart, Louvain-la-Neuve, pp 503–519Google Scholar
  51. Lavelle P, Sow B, Schaefer R (1980) The geophagous earthworm community in the Lamto savanna (Ivory Coast): Niche partitioning and utilization of soil nutritive resources. In: Dindal D (ed) VIIth CIZS, Syracuse, NY EPA, Washington DC, pp 653–672Google Scholar
  52. Lavelle P, Maury ME, Serrano V (1981) Estudio cuantitativo de la fauna del suelo en la region de Laguna Verda, Cera Cruz. Epoca de Iluvias. Inst Ecol, Publ 6:75–105Google Scholar
  53. Lavelle P, Zaidi Z, Schaefer R (1983) Interaction between earthworms, soil organic matter and microflora in an African savanna soil. In: Lebrun Ph, André AM, de Medts A, Gregoire-Wibo C, Wauthy G (eds) New trends in soil biology. Dieu Brichart, Louvain-la-Neuve, pp 253–259Google Scholar
  54. Laverack MS (1963) The physiology of earthworms. Pergamon Press, OxfordGoogle Scholar
  55. Lee KE (1959) The earthworm fauna of New Zealand. NZ Dept Sci Ind Res, Bull 130Google Scholar
  56. Lee KE (1985) Earthworms: Their ecology and relationships with soils and land use. Academic Press London, New YorkGoogle Scholar
  57. Ljungström PO (1972) Introduced earthworms of South Africa. On their taxonomy, distribution, history of introduction and on the extermination of endemic earthworms. Zool Jahrb Abt Syst Oekol Geogr Tiere 99:1–81Google Scholar
  58. Martin A, Cortez J, Barois I, Lavelle P (1987) Les mucus de Ver de terre moteur de leurs interactions avec la microflore. Rev Ecol Biol Sol 24:549–558Google Scholar
  59. Mazaud D, Bouché B (1980) Introduction en surpopulation et migrations de Lombriciens marqués In: Dindal D (ed) Soil biology as related to land use practices. EPA, Washington DC, pp 687–701Google Scholar
  60. Nemeth A (1981) Estudio ecologio de las Lombrices de tierra (Oligochaeta) en ecosistemas de bosque humedo tropical en San Carlos de Rio Negro, Territorio Federal Amazonas. Thesis, Univ Cent VenezuelaxGoogle Scholar
  61. Nordström S, Rundgren S (1973) Associations of Lumbricids in Southern Sweden. Pedobiologia 13:301–326Google Scholar
  62. Nordström S, Rundgren S (1974) Environmental factors and Lumbricid associations in southern Sweden. Pedobiologia 14:1–27Google Scholar
  63. Nye PH (1955) Soil-forming processes in the humid tropics IV: The action of the soil fauna. J Soil Sci 6:51–83Google Scholar
  64. O'Brien BJ, Stout JD (1978) Movement and turnover of soil organic matter as indicated by carbon isotope measurements. Soil Biol Biochem 10:309–317Google Scholar
  65. Parle JN (1963) Microorganisms in the intestines of earthworms. J Gen Microbiol 31:1–11Google Scholar
  66. Parton WJ, Anderson DW, Cole CV, Stewart JWB (1984) Simulation of soil organic matter formation and mineralization in semiarid agroecosystems. In: Lowrance R (ed) Nutrient cycling in agricultural ecosystems. Univ Georgia, Spec Publ23:533–550Google Scholar
  67. Perel TS (1977) Differences in Lumbricid organization connected with ecological properties. Ecol Bull (Stockh) 25:56–63Google Scholar
  68. Phillipson J, Abel R, Steel J, Woodell SRJ (1976) Earthworms and the factors governing their distribution in an English beechwood. Pedobiologia 16:258–285Google Scholar
  69. Piearce TG (1978) Gut contents of some Lumbricid earthworms. Pedobiologia 18:153–157Google Scholar
  70. Piearce TG, Phillips MJ (1980) The fate of ciliates in the earthworm gut: An in vitro study. Microbiol Ecol 5:313–320Google Scholar
  71. Pineda A, Hernandez AH (1983) Efecto de la temperatura sobre el crecimiento, consumo de tierra y fecundidad de la lombriz de tieara Pontoscolex corethrurus Muller (Glossoscolecidae). Thesis Univ Natl MexicoGoogle Scholar
  72. Rafidison Z (1982) Rôle de la faune dans l'humification: Transformations des feuilles de hêtre par un ver anécique Nicodrilus velox. PhD Thesis, Univ NancyGoogle Scholar
  73. Van Rhee JA (1969) Inoculation of earthworms in a newly drained polder. Pedobiologia 9:133–140Google Scholar
  74. Rose CJ, Wood AW (1980) Some environmental factors affecting earthworm populations and sweet potato production in the Tari Basin, Papua New Guinea Highlands. Papua New Guinea Agric J 31:1–13Google Scholar
  75. Rouelle J (1983) Devenir de quelques amibes (Protozoa, Amoebida) et de Rhizobium japonicum dans le tube digestif d'Eisenia fetida (Sav.) et de Lumbricus terrestris L. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 375–382Google Scholar
  76. Satchell JE (1967) Earthworms. In: Burges A, Raw F (eds) Soil biology. Academic Press, London, New York, pp 259–322Google Scholar
  77. Satchell JE (1980) r worms and K worms. A basis for classifying Lumbricid earthworm strategies. In: Dindal DL (ed) Soil biology as related to land use practices. EPA, Washington DC, pp 848–854Google Scholar
  78. Satchell JE (ed) (1983a) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, LondonGoogle Scholar
  79. Satchell JE (1983b) Earthworm microbiology. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 351–364Google Scholar
  80. Satchell JE, Lowe DG (1967) Selection of leaf litter by Lumbricus terrestris. In: Vieweg F (ed) Progress in soil biology. Braunschweig, pp 102–119Google Scholar
  81. Schwert DP (1980) Active and passive dispersal of lumbricid earthworms. In: Dindal D (ed) Soil biology as related to land use practices. EPA, Washington DC, pp 182–189Google Scholar
  82. Senapati BK (1980) Aspects of ecophysiological studies on tropical earthworms (distribution, population dynamics, production, energetics and their role in the decomposition process). PhD, Sambalpcur Univ, IndiaGoogle Scholar
  83. Springett JA (1985) Effect of introducing Allolobophora longa Ude on root distribution and some soil properties in New Zealand pastures. In: Fitter A et al. (eds) Ecological interactions in soil. Blackwell, London, pp 399–406Google Scholar
  84. Stockdill SMJ (1966) The effects of earthworms on pastures. Proc NZ Ecol Soc 13:68–75Google Scholar
  85. Stockdill SMJ (1982) Effects of introduced earthworms on the productivity of New Zealand pastures. Pedobiologia 24:29–35Google Scholar
  86. Stout JD, Goh KM (1980) The use of radiocarbon to measure the effects of earthworms on soil development. Radiocarbon 22:892–896Google Scholar
  87. Stout JD, Goh KM, Rafter TA (1981) Chemistry and turnover of naturally occurring resistant organic compounds in soil. In: Paul EA, Ladd JN (eds) Soil biochemistry, vol 5. Dekker, New York, pp 1–73Google Scholar
  88. Swift MJ (ed) (1984) Soil biology and fertility in the tropics: A proposal for a collaborative programme of research. Biol Int 5:1–38Google Scholar
  89. Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol 5. Blackwell, OxfordGoogle Scholar
  90. Syers JK, Springett JA (1983) Earthworm ecology in grassland soils. In: Satchell JE (ed) Earthworm ecology: From Darwin to vermiculture. Chapman and Hall, London, pp 67–84Google Scholar
  91. Toutain F (1981) Les humus forestiers. Structures et modes de fonctionnement. Rev For Fr (Nancy) 33:449–477Google Scholar
  92. Van Gansen P (1962) Structures et fonctions du tube digestif du Lombricien Eisenia fetida. PhD Thesis, Univ BrusselsGoogle Scholar
  93. Vuattoux R (1970) Observations sur l'évolution des strates arborées et arbustes de la savane de Lamto (Côte d'Ivoire). Ann Univ Abidjan,E3:285–315Google Scholar
  94. Waksman SA, Martin JP (1939) The conservation of the soil. Science 90:304–305Google Scholar
  95. Yeates GW (1981) Soil nematode populations depressed in the presence of earthworms. Pedobiologia 22:191–195Google Scholar
  96. Zaidi Z (1985) Recherches sur les modalités de l'interdépendance nutritionnelle entre Vers de terre et microflore dans la savane guinéenne de Lamto (Côte d'Ivoire): Esquisse d'un systéme ineractif. PhD Thesis, Paris XIGoogle Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Lavelle
    • 1
  1. 1.Laboratoire d'Ecologie, Ecole Normale SupérieureParis, Cedex 05France

Personalised recommendations