Advertisement

Journal of Comparative Physiology B

, Volume 161, Issue 4, pp 441–449 | Cite as

Biochemical composition of the parasitic amphipod Hyperia galba in relation to age and starvation

  • Birgit Dittrich
Article

Summary

Hyperia galba was collected in the waters around Helgoland and in the Weser-Elbe-estuary during autumn. Its mode of life is a temporary but obligatory parasitism. The basal biochemical composition of the adults was analyzed in detail and related to the fresh, dry, and ash-free dry weight as well as sex and body length. Hyperia galba (males/females) consists of 85/86% water; the dry matter contains approximately 64/61% protein, 10/11% lipid, 1.2/1.5% carbohydrate, 10/8% chitin, and 23/23% ash. The analyses of basal elemental composition yielded approximately 38% C, 9% N and 6% H. Under natural conditions, individuals may encounter at least two periods of food shortage during their lives. Therefore, the analyses were carried out on individuals of different developmental stages also under food deprivation. The data are discussed with respect to the special mode of life of the species and compared with those found by other authors in several related crustacean species.

Key words

Hyperiid amphipods Chemical composition Energy content Parasitism Starvation effects 

Abbreviations

AFDW

ash-free dry weight

BL

body length

DW

dry weight

SD

standard deviation

WW

wet weight

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anger K (1979a) Untersuchungen zum Lebenszyklus der Amphipoden Bathyporeia sarsi, Microdeutopus gryllotalpa und Corophium insidiosum in der Kieler Bucht. Mitt Zool Mus Univ Kiel 1, 3: 1–6Google Scholar
  2. Anger K (1979b) Die Bezichung zwischen Körpergröße, Trockenge-wicht und Eizahl bei einigen Amphipoden der westlichen Ostsee. Mitt Zool Mus Univ Kiel I, 3: 7–11Google Scholar
  3. Anger K (1984) Gain and loss of particulate organic and inorganic matter in larval and juvenile spider crabs (Hyas araneus) during growth and exuviation. Helgoländer Meeresunters 38: 107–122Google Scholar
  4. Båmstedt U (1974) Biochemical studies on the deep-water pelagic community of Korsfjorden, Western Norway. Methodology and sample design. Sarsia 56: 71–86Google Scholar
  5. Båmstedt U (1976) Studies on the deep-water pelagic community of Korsfjorden, Western Norway. Changes in size and biochemical composition of Meganyctiphanes norvegica (Euphausiacea) in relation to its life cycle. Sarsia 61: 15–30Google Scholar
  6. Båmstedt U (1986) Chemical composition and energy content. In: Corner EDS, O'Hara SCM (eds) The biological chemistry of marine copepods. Clarendon Press, Oxford: 1–58Google Scholar
  7. Clarke A (1982) Lipid synthesis and reproduction in the polar shrimp Chorismus antarcticus. Mar Ecol Progr Ser 9: 81–90Google Scholar
  8. Clarke A (1984) The lipid content and composition of some Antarctic macrozooplankton. Br Antarct Surv Bull 63: 57–70Google Scholar
  9. Clarke A, Skadsheim A, Holmes LJ (1985) Lipid biochemistry and reproductive biology in two species of Gammaridae (Crustacea: Amphipoda). Mar Biol 88: 247–263Google Scholar
  10. Clutter RI, Theilacker GH (1971) Ecological efficiency of a pelagic mysidal shrimp; estimates from growth, energy budget, and mortality studies. Fish Bull US 69: 93–115Google Scholar
  11. Cummins KW, Wuycheck JC (1971) Caloric equivalents for investigations in ecological energetics. Int Ver Theor Angew Limnol Verh 19: 1–158Google Scholar
  12. Dagg MJ (1976) Complete carbon and nitrogen budgets for the carnivorous amphipod, Calliopius laeviusculus (Krøyer). Int Rev Ges Hydrobiol 61(3): 297–357Google Scholar
  13. Dawirs R (1981) Elemental composition (C, N, H) and energy in the development of Pagurus bernhardus (Decapoda: Paguridae) megalopa. Mar Biol 64: 117–123Google Scholar
  14. Dawirs R (1983) Respiration, energy balance, and development during growth and starvation of Carcinus maenas L. larvae (Decapoda: Portunidae). J Exp Mar Biol Ecol 69: 105–128Google Scholar
  15. Dittrich B (1986) Beiträge zur Ökologie und Biologie von Hyperia galba (Montagu, 1813). Diss Univ Bochum: 1–202Google Scholar
  16. Dittrich B (1987) Postembryonic development of the parasitic amphipod Hyperia galba. Helgoländer Meeresunters 41: 217–232Google Scholar
  17. Dittrich B (1988) Studies on the life cycle and reproduction of the parasitic amphipod Hyperia galba in the North Sea. Helgoländer Meeresunters 42: 79–98Google Scholar
  18. Ferguson CF, Raymont JKB (1974) Biochemical studies on marine zooplankton. XII. Further investigations on Euphausia superba Dana. J Mar Biol Ass UK 54: 719–725Google Scholar
  19. Fowler SW, Small LF, Keckes S (1971) Effects of temperature and size on molting in euphausiid crustaceans. Mar Biol 11:45–51Google Scholar
  20. Franke U (1977) Experimentelle Untersuchungen zur Respiration von Gammarus fossarum Koch 1835 (Crustacea — Amphipoda) in Abhängigkeit von Temperatur, Sauerstoffkonzentration und Wasserbewegung. Arch Hydrobiol (Suppl) 48(3/4): 369–411Google Scholar
  21. Gnaiger E, Bitterlich G (1984) Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia 62:289–298Google Scholar
  22. Green RH (1971) Lipid and caloric contents of the relict amphipod Pontoporeia affinis in Cayuga Lake, New York. J Fish Res Bd Can 28: 776–777Google Scholar
  23. Grodzinski W, Klekowski RZ, Duncan A (1975) Methods for ecological bioenergetics. IBP Handbook No. 24; Blackwell Scientific Publications: 160–169Google Scholar
  24. Hagen W (1988) Zur Bedeutung der Lipide im antarktischen Zooplankton. Ber Polarforsch 49: 1–129Google Scholar
  25. Harris RP (1973) Feeding, growth, reproduction, and nitrogen utilization by the harpacticoid copepod Tigriopus brevicornis. J Mar Biol Ass UK 53: 785–800Google Scholar
  26. Holland DL, Gabbott PA (1971) Amicro-analytical scheme for the determination of protein, carbohydrate, lipid, and RNA levels in marine invertebrate larvae. J Mar Biol Ass UK 51: 659–668Google Scholar
  27. Holland DL, Hannant PJ (1973) Addendum to a microanalytical scheme for the biochemical analysis of marine invertebrate larvae. J Mar Biol Ass UK 53:833–838Google Scholar
  28. Ikeda T (1974) Nutritional ecology of marine zooplankton. Mem Fac Fish Hokkaido Univ 22: 1–97Google Scholar
  29. Jerde CW, Lasker R (1966) Moulting of euphausiid shrimps: shipboard observations. Limnol Oceanogr 11: 120–124Google Scholar
  30. Lappalainen A, Kangas P (1975) littoral benthos of the northern Baltic Sea II. Interrelationships of wet, dry and ash-free dry weights of macrofauna in the Tvärminne Area. Int Revue Ges Hydrobiol 60(3): 297–312Google Scholar
  31. Lasker R (1966) Feeding, growth, respiration and carbon utilization of a Euphausiid crustacean. J Fish Res Bd Canada 23(9): 1291–1317Google Scholar
  32. Lee RF (1974) Lipid composition of the copepod (Calanus hyperboreas) from the Arctic Ocean. Changes with depth and season. Mar Biol 26: 313–318Google Scholar
  33. Lee RF (1975) Lipids of arctic zooplankton. Comp Biochem Physiol 51 B: 263–266Google Scholar
  34. Littlepage JL (1964) Seasonal variation in lipid content of two antarctic marine crustacea. Actual Scient Industr 1312:463–470Google Scholar
  35. Logan DT, Epifanio CE (1978) A laboratory energy balance for the larvae and juveniles of the American lobster Homarus americanus. Mar Biol 47: 381–389Google Scholar
  36. Nair KKC, Anger K (1979a) Life cycle of Corophium insidiosum (Crustacea, Amphipoda) in laboratory culture. Helgoländer Wiss Meeresunters 32: 279–294Google Scholar
  37. Nair KKC, Anger K (1979b) Experimental studies on the life cycle of Jassa falcata (Crustaea, Amphipoda). Helgoländer Wiss Meeresunters 32: 444–452Google Scholar
  38. Nair KKC, Anger K (1980) Seasonal variation in population structure and biochemical composition of Jassa falcata (Crustacea, Amphipoda) off the Island of Helgoland (North Sea). East Coast Mar Sci. II: 505–513Google Scholar
  39. Norrbin F, Båmstedt U (1984) Energy contents in benthic and planktonic invertebrates of Kosterfjorden, Sweden. A comparison of energetic strategies in marine organism groups. Ophelia 23(1): 47–64Google Scholar
  40. Omori M (1969) Weight and chemical composition of some important oceanic zooplankton in the North Pacific Ocean. Mar Biol 3: 4–10Google Scholar
  41. Omori M (1978) Some factors affecting on dry weight, organic weight and concentrations of carbon and nitrogen in freshly prepared and preserved zooplankton. Int Revue Ges Hydrobiol 63(2): 261–269Google Scholar
  42. Patton WK (1067) Commensal crustacea. Proc Symp Crustacea Mar Biol Ass India 3: 1228–1243Google Scholar
  43. Pearse JS, Giesc AO (1966) The organic constitution of several benthonic invertebrates from McMurdo Sound, Antarctica. Comp Biochem Physiol 18: 47–57Google Scholar
  44. Percy JA (1979) Seasonal changes in organic composition and caloric content of an arctic marine amphipod, Onisimus (=Boeckosimus) affinis (H.J. Hansen). J Exp Mar Biol Ecol 40: 183–192Google Scholar
  45. Percy JA, Fife FJ (1981) The biochemical composition and energy content of arctic marine macrozooplankton. Arctic 34(4): 307–313Google Scholar
  46. Raymont JEG, Austin J, Linford E (1964) Biochemical studies on marine zooplankton. I. The biochemical composition of Neomysis integer. J Cons Perm Int Explor Mer 28: 354–363Google Scholar
  47. Raymont JEG, Conover RJ (1961) Further investigations on the carbohydrate content of marine zooplankton. Limn Oceanogr 6:154–164Google Scholar
  48. Raymont JEG, Srinivasagam RT, Raymont JKB (1969) Biochemical studies on marine zooplankton. VII. Observations on certain deep sea zooplankton. Int Rev Ges Hydrobiol 54(3), 357–365Google Scholar
  49. Raymont JEG, Srinivasagam RT, Raymont JKB (1971) Biochemical studies on marine zooplankton. VIII. Further observations on Meganyctiphanes norveciga (M. Sars). Deep-Sea Res 18: 1167–1178Google Scholar
  50. Sameoto DD (1976) Respiration rates, energy budgets, and molting frequencies of three species of euphausiids found in the Gulf of St. Lawrence. J Fish Res Bd Can 33: 2568–2581Google Scholar
  51. Snow NB (1972) The effect of season and animal size on the caloric content of Daphnia pulicaria Forbes. Limnol Oceanogr 17: 909–913Google Scholar
  52. Williams R, Robins D (1979) Calorific, ash, carbon, and nitrogen content in relation to length and dry weight of Parathemisto gaudichaudi (Amphipoda: Hyperiidea) in the North East Atlantic Ocean. Mar Biol 52: 247–252Google Scholar
  53. Williams R, Robins DB (1982) Effects of preservation on wet weight, dry weight, nitrogen, and carbon content of Calanus helgolandicus (Crustacea: Copepoda). Mar Biol 71: 271–282Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Birgit Dittrich
    • 1
    • 2
  1. 1.Alfred-Wegener-Institut für Polar- und MeeresforschungBremerhavenFederal Republic of Germany
  2. 2.Biologische Anstalt Helgoland (Meeresstation)HelgolandFederal Republic of Germany

Personalised recommendations