European Biophysics Journal

, Volume 14, Issue 1, pp 1–6

Dynamic nuclear polarisation of biological matter

  • H. B. Stuhrmann
  • O. Schärpf
  • M. Krumpolc
  • T. O. Niinikoski
  • M. Rieubland
  • A. Rijllart
Article

Abstract

Polarised targets as used in high energy physics experiments may be of considerable interest in biological structure research using polarized neutrons. So far, this promising method has been facing difficulties in getting reasonable polarization of the target nuclei. We report on a polarized “frozen spin” target which has been prepared from an enzyme dissolved in a mixture of heavy water and deuterated propanediol doped with a completely deuterated paramagnetic radical. Clusters of 700 protons defined by the structure of lysozyme embedded in a fully deuterated matrix were polarized to 75% within an hour by 4 mm microwave irradiation in a magnetic field of 2.5 tesla at a temperature of 0.3 K. The polarisation behaviour of biological targets can be compared to the best frozen spin target materials in high energy physics research.

Key words

Polarised targets spin diffusion cryobiochemistry of proteins polarised neutron scattering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam A, Goldman M (1982) Nuclear magnetism: Order and disorder. In: Krumhansl JA, Marshal W, Wilkinson DA (eds) The international series of monographs on physics. Clarendon Press, OxfordGoogle Scholar
  2. Abragam A, Bacchella CL, Coustham J, Glättli H, Fourmond M, Malinovski A, Meriel P, Pinot M, Roubeau P (1982) The interest of spin dependent neutron nuclear scattering amplitudes. J Phys (Paris) 43 C7:373–381Google Scholar
  3. Boer M de, Morimoto K, Niinikoski TO, Udo F (1974) Dynamic polarisation of protons, deuterons and carbon-13 nuclei: thermal contact between nuclear spins and electron spin-spin interaction reservoir. J Low Temp Phys 15:249–267Google Scholar
  4. Boer W de, Niinikoski TO (1974) Dynamic nuclear polarisation in propanediol below 0.5 K. Nucl Instrum Methods 114:495–498Google Scholar
  5. Borghini M, Scheffler K (1970) Dynamic polarisation of deuterons in frozen alcohol-water mixtures. Phys Lett 31A:535–536Google Scholar
  6. Douzou P (1977) Cryobiochemistry. An introduction. Academic Press, LondonGoogle Scholar
  7. Krumpolc M, Rocek J (1979) Synthesis of stable chromium (V) complexes of tertiary hydroxy acids. J Am Chem Soc 101:3206Google Scholar
  8. Niinikoski T (1976) Polarised targets at CERN. In: High energy physics with polarized beams and targets. AIP Conference Proceedings, Vol 35, p 458. American Institut of Physics, New YorkGoogle Scholar
  9. Niinikoski TO, Rieubland JM (1978) Horizontal dilution refrigerator without low-temperature vacuum seal. IIF-IIR, pp 181–184Google Scholar
  10. Niinikoski TO, Rijllart A (1982) An MC68000 Microprocessor CAMAC system for NMR measurement of polarisation. Nucl Instrum Methods 199:485–489Google Scholar
  11. Schärpf O (1982) The polarised neutron technique of spin echo. AIP Conf Proc 89:182–189Google Scholar
  12. Stuhrmann HB (1985) Resonance scattering in macromolecular structure research. Adv Polymer Sci 67:123–163Google Scholar
  13. Stuhrmann HB (1985) Morphology and structure of biological systems. International Conference on Neutron Scattering in the '90s, IAEA-CN-46/048Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • H. B. Stuhrmann
    • 1
  • O. Schärpf
    • 2
  • M. Krumpolc
    • 3
  • T. O. Niinikoski
    • 4
  • M. Rieubland
    • 4
  • A. Rijllart
    • 4
  1. 1.Institut of Physical ChemistryUniversity of MainzMainzFederal Republic of Germany
  2. 2.Institut Max von Laue-Paul LangevinGrenobleFrance
  3. 3.Department of ChemistryUniversity of IllinoisChicagoUSA
  4. 4.EP DivisionCERNGenevaSwitzerland
  5. 5.DESY-HASYLABHamburg 52Federal Republic of Germany

Personalised recommendations