Molecular and General Genetics MGG

, Volume 227, Issue 2, pp 306–317

Mitochondrial mutations restricting spontaneous translational frameshift suppression in the yeast Saccharomyces cerevisiae

  • Hajime Sakai
  • Renate Stiess
  • Brigitte Weiss-Brummer


The +1 frameshift mutation, M5631, which is located in the gene (oxi1) for cytochrome c oxidase II (COXII) of the yeast mitochondrial genome, is suppressed spontaneously to a remarkably high extent (20%–30%). The full-length wild-type COXII produced as a result of suppression allows the mutant strain to grow with a “leaky” phenotype on non-fermentable medium. In order to elucidate the factors and interactions involved in this translational suppression, the strain with the frameshift mutation was mutated by MnCl2 treatment and a large number of mutants showing restriction of the suppression were isolated. Of 20 mutants exhibiting a strong, restricted, respiration-deficient (RD) phenotype, 6 were identified as having mutations in the mitochondrial genome. Furthermore, genetic analyses mapped one mutation to the vicinity of the gene for tRNAPro and two others to a region of the tRNA cluster where two-thirds of all mitochondrial tRNA genes are encoded. The degree of restriction of the spontaneous frameshift suppression was characterized at the translational level by in vivo 35S-labeling of the mitochondrial translational products and immunoblotting. These results showed that in some of these mutant strains the frameshift suppression product is synthesized to the same extent as in the leaky parent strain. It is suggested that more than one +1 frame-shifted product is made as a result of suppression in these strains: one is as functional as the wild-type COXII, the other(s) is (are) non-functional and prevent leaky growth on non-fermentable medium. A possible mechanism for this heterogenous frameshift suppression is discussed.

Key words

Yeast Mitochondria Frameshift Suppression Restriction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkins JF, Gesteland RF, Reid BR, Anderson CW (1979) Normal tRNAs promote ribosomal frameshifting. Cell 18:1119–1131Google Scholar
  2. Bairoch A (1988) SWISS-PROT, protein sequence data bank: release 9.0, Nov. 1988. Medical Biochemistry Department, University of GenevaGoogle Scholar
  3. Brierley I, Boursnell MEG, Binns MM, Bilimoria B, Blok VC, Brown TDK, Inglis SC (1987) An efficient ribosomal frameshifting signal in the polymerase-encoding region of the coronavirus IBV. EMBO J 6:3779–3785Google Scholar
  4. Brierley I, Digard P, Inglis SC (1989) Characterization of an efficient coronavirus ribosomal frameshifting signal: Requirement of an RNA pseudoknot. Cell 57:537–547Google Scholar
  5. Capaldi RA, Malatesta F, Darley-Usmar VM (1983) Structure of cytochrome c oxidase. Biochim Biophys Acta 726:135–148Google Scholar
  6. Craigen WJ, Cook RG, Tate WP, Caskey CT (1985) Bacterial peptide chain release factors: conserved primary structure and possible frameshift regulation of release factor 2. Proc Natl Acad Sci USA 82:3616–3620Google Scholar
  7. Curran JF, Yarns M (1989) Rates of aminoacyl-tRNA selection at 29 sense codons in vivo. J Mol Biol 209:65–77Google Scholar
  8. de Zamaroczy M, Bernardi G (1986) The primary structure of the mitochondrial genome of Saccharomyces cerevisiae — a review. Gene 47:155–177Google Scholar
  9. Dujardin G, Pajot P, Groudinsky O, Slonimski PP (1980) Long range control circuits within mitochondria and between nucleus and mitochondria. Mol Gen Genet 179:469–482Google Scholar
  10. Dujon B (1981) Mitochondrial genetics and functions. In: Strathern J, Jones EW, Broach JR (eds) The molecular biology of the yeast Saccharomyces cerevisiae. Cold Spring Harbor Laboratory Press, New York, pp 505–635Google Scholar
  11. Fox TD (1979) Genetic and physical analysis of the mitochondrial gene for subunit II of yeast cytochrome c oxidase. J Mol Biol 130:63–82Google Scholar
  12. Fox TD, Weiss-Brummer B (1980) Leaky +1 and −1 frameshift mutations at the same site in a yeast mitochondrial gene. Nature 288:60–63Google Scholar
  13. Haid A, Suissa M (1983) Immunochemical identification of membrane proteins after sodium dodecylsulfate-polyacrylamide gel electrophoresis. Methods Enzymol 96:192–205Google Scholar
  14. Haid S, Schweyen RJ, Bechmann H, Kaudewitz F, Solioz M, Schatz G (1979) The mitochondrial COB region in yeast codes for apocytochrome b and is mosaic. Eur J Chem 94:451–464Google Scholar
  15. Hudspeth MES, Shumard DS, Tatti KM, Grossman LI (1980) Rapid purification of yeast mitochondrial DNA in high yield. Biochim Biophys Acta 610:221–228Google Scholar
  16. Hughes D, Atkins JF, Thompson S (1987) Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. EMBO J 6:4235–4239Google Scholar
  17. Hüttenhofer A, Sakai H, Weiss-Brummer B (1988) Site-specific AT-cluster insertions in the mitochondrial 15S rRNA gene of the yeast S. cerevisiae. Nucleic Acids Res 16:8665–8674Google Scholar
  18. Hüttenhofer A, Weiss-Brummer B, Dirheimer G, Martin RP (1990) A novel type of +1 frameshift suppressor: a base substitution in the anticodon stem of a yeast mitochondrial serine-tRNA causes frameshift suppression. EMBO J 9:551–558Google Scholar
  19. Jacks T, Varmus HE (1985) Expression of the Rous sarcoma virus pol gene by ribosomal frameshifting. Science 230:1237–1242Google Scholar
  20. Jacks T, Townsley K, Varmus HE, Majors J (1987) Two efficient ribosomal frameshifting events are required for synthesis of mouse mammary tumor virus gag-related polyproteins. Proc Natl Acad Sci USA 84:4298–4302Google Scholar
  21. Jacks T, Madhani HD, Masiarz FR, Varmus HE (1988a) Signals for ribosomal frameshifting in the Rous sarcoma virus gag-pol region. Cell 55:447–458Google Scholar
  22. Jacks T, Power MD, Masiarz FR, Luciw PA, Barr PJ, Varmus HE (1988b) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression. Nature 331:280–283Google Scholar
  23. Johnson DA, Gautsch JW, Sportsman JR, Elder JH (1984) Improved technique utilizing nonfat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Anal Technol 1:3–8Google Scholar
  24. Kotylak Z, Slonimski PP (1977) Mitochondrial mutants isolated by a new screening method based upon the use of the nuclear mutation opl. In: Bandlow W, Schweyen RJ, Wolf K, Kaudewitz F (eds) Genetics and biogenesis of mitochondria. De Gruyter, Berlin, pp 83–89Google Scholar
  25. Lancashire WE, Mattoon JR (1979) Cytoduction: a tool for mitochondrial genetics studies in yeast. Mol Gen Genet 170:333–344Google Scholar
  26. Mogi T, Stern LJ, Chao BH, Khorana HG (1989) Structure-function studies on bacteriorhodopsin. J Biol Chem 264:14192–14196Google Scholar
  27. Murgola EJ (1985) tRNA, suppression, and the code. Annu Rev Genet 19:57–80Google Scholar
  28. Sakai H (1989) Suppression einer mitochondrialen Frameshift-Mutation der Hefe Saccharomyces cerevisiae: Bi-direktionale nukleomitochondriale Interaktion. Dissertation, University MunichGoogle Scholar
  29. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74:5463–5467PubMedGoogle Scholar
  30. Schweyen RJ, Steyrer U, Kaudewitz F, Dujon B, Slonimski PP (1976) Mapping of mitochondrial genes in Saccharomyces cerevisiae. Mol Gen Genet 146:117–132Google Scholar
  31. Schweyen RJ, Weiss-Brummer B, Backhaus B, Kaudewitz F (1978) The genetic map of mitochondrial genome in yeast. Mol Gen Genet 159:151–160Google Scholar
  32. Sibler AP, Dirheimer G, Martin RP (1986) Codon reading patterns in Saccharomyces cerevisiae mitochondria based on sequences of mitochondrial tRNAs. FEBS Lett 194:131–138Google Scholar
  33. Sor F, Fukuhara H (1983) Unequal excision of complementary strands is involved in the generation of palindromic repetitions of rho mitochondria) DNA in yeast. Cell 32:391–396Google Scholar
  34. Spanjaard RA, van Duin J (1988) Translation of the sequence AGG-AGG yields 50% ribosomal frameshifting. Proc Natl Acad Sci USA 85:7967–7971Google Scholar
  35. Toth MJ, Murgola EJ, Schimmel P (1988) Evidence for a unique first position codon-anticodon mismatch in vivo. J Mol Biol 201:451–454Google Scholar
  36. Tsuchihashi Z, Kornberg A (1990) Translational frameshifting generates the γ subunit of DNA polymerase III holoenzyme. Proc Natl Acad Sci USA 87:2516–2520Google Scholar
  37. Tzagoloff A, Myers AM (1986) Genetics of mitochondrial biogenesis. Annu Rev Biochem 55:249–285Google Scholar
  38. Weiss R, Gallant JA (1986) Frameshift suppression in aminoacyl-tRNA limited cells. Genetics 112:727–739Google Scholar
  39. Weiss RB, Dunn DM, Dahlberg AE, Atkins JF, Gestland RE (1988) Reading frame switch caused by base-pair formation between the 3′ end of 16S rRNA and the mRNA during elongation of the protein synthesis in Escherichia coli. EMBO J 7:1503–1507Google Scholar
  40. Weiss-Brummer B, Hüttenhofer A (1989) The paromomycin resistance mutation (par r 454) in the 15S rRNA gene of the yeast Saccharomyces cerevisiae is involved in ribosomal frameshifting. Mol Gen Genet 217:362–369Google Scholar
  41. Weiss-Brummer B, Guba R, Haid A, Schweyen RJ (1979) Fine structure of oxi1, the mitochondrial gene coding for subunit II of yeast cytochrome c oxidase. Curr Genet 1:75–83Google Scholar
  42. Weiss-Brummer B, Hüttenhofer A, Kaudewitz F (1984) Leakiness of termination codons in mitochondrial mutants of the yeast Saccharomyces cerevisiae. Mol Gen Genet 198:62–68Google Scholar
  43. Weiss-Brummer B, Sakai H, Kaudewitz F (1987) A mitochondria) frameshift suppressor (+1) of the yeast S. cerevisiae maps in the mitochondrial 15S rRNA locus. Curr Genet 11:295–301Google Scholar
  44. Weiss-Brummer B, Sakai H, Hüttenhofer A (1989) A mitochondrial frameshift suppressor maps to the tRNAsser-var1 region of the mitochondrial genome of the yeast S. cerevisiae. Curr Genet 15:295–301Google Scholar
  45. Wesolowski M, Fukuhara H (1979) The genetic map of transfer RNA genes of yeast mitochondria. Mol Gen Genet 170:261–275Google Scholar
  46. Wolf K, Dujon B, Slonimski PP (1973) Mitochondrial genetics. V. Multifactorial crosses involving a mutation conferring paramomycin-resistance in Saccharomyces cerevisiae. Mol Gen Genet 125:53–90Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Hajime Sakai
    • 1
  • Renate Stiess
    • 1
  • Brigitte Weiss-Brummer
    • 1
  1. 1.Institut für Genetik und Mikrobiologie der Universität MünchenMünchen 19Germany
  2. 2.Division of Biology, 156-29California Institute of TechnologyPasadenaUSA

Personalised recommendations