Molecular and General Genetics MGG

, Volume 224, Issue 1, pp 119–128 | Cite as

A new family of polymorphic genes in Saccharomyces cerevisiae: α-galactosidase genes MEL1-MEL7

  • Gennadi Naumov
  • Hilkka Turakainen
  • Elena Naumova
  • Sirpa Aho
  • Matti Korhola
Article

Summary

Using genetic hybridization analysis we identified seven polymorphic genes for the fermentation of melibiose in different Mel+ strains of Saccharomyces cerevisiae. Four laboratory strains (1453-3A, 303-49, N2, C.B.11) contained only the MEL1 gene and a wild strain (VKM Y-1830) had only the MEL2 gene. Another wild strain (CBS 4411) contained five genes: MEL3, MEL4, MEL5, MEL6 and MEL7. MEL3-MEL7 were isolated and identified by backcrosses with Mel parents (X2180-1A, S288C). A cloned MEL1 gene was used as a probe to investigate the physical structure and chromosomal location of the MEL gene family and to check the segregation of MEL genes from CBS 4411 in six complete tetrads. Restriction and Southern hybridization analyses showed that all seven genes are physically very similar. By electrokaryotyping we found that all seven genes are located on different chromosomes MEL1 on chromosome II as shown previously by Vollrath et al. (1988), MEL2 on VII, MEL3 on XVI, MEL4 on XI, MEL5 on IV, MEL6 on XIII, and MEL7 on VI. Molecular analysis of the segregation of MEL genes from strain CBS 4411 gave results identical to those from the genetic analyses. The homology in the physical structure of this MEL gene family suggests that the MEL loci have evolved by transposition of an ancestral gene to specific locations within the genome.

Key words

Melibiose MEL Saccharomyces Polymorphic genes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ammerer G (1983) Expression of genes in yeast using the ADC1 promoter. Meth Enzymol 101:192–201Google Scholar
  2. Baldani C, Cesareni G (1985) Plasmid pEMBLY: new singlestranded shuttle vectors for the recovery and analysis of yeast DNA sequences. Gene 35:27–32Google Scholar
  3. Barnett JA (1976) The utilization of sugars by yeasts. Adv Carbohydr Chem Biochem 32:125–234Google Scholar
  4. Barnett JA (1981) The utilization of disaccharides and some other sugars by yeasts. Adv Carbohydr Chem Biochem 39:347–404Google Scholar
  5. Buckholz RG, Adams BG (1981) Induction and genetics of two α-galactosidase activities in Saccharomyces cerevisiae. Mol Gen Genet 182:77–81Google Scholar
  6. Carlson M, Celenza JL, Eng FJ (1985) Evolution of the dispersed SUC gene family of Saccharomyces by rearrangements of chromosome telomeres. Mol Cell Biol 5:2894–2902Google Scholar
  7. Charron MJ, Read E, Haut SR, Michels CA (1989) Molecular evolution of the telomere-associated MAL loci of Saccharomyces. Genetics 122:307–316Google Scholar
  8. Haupt W, Alps H (1963) Über die Vergärung der Melibiose durch Saccharomyces-Stämme. Arch Mikrobiol 45:179–187Google Scholar
  9. Johnston SAJ, Hopper JE (1982) Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci USA 79:6971–6975Google Scholar
  10. Kew OM, Douglas HC (1976) Genetic co-regulation of galactose and melibiose utilization in Saccharomyces cerevisiae. J Bacteriol 125:33–41Google Scholar
  11. Laughon A, Gesteland RF (1984) Primary structure of the Saccharomyces cerevisiae GAL4 gene. Mol Cell Biol 4:260–267Google Scholar
  12. Liljeström PL (1985) The nucleotide sequence of the yeast MEL1 gene. Nucleic Acids Res 13:7257–7268Google Scholar
  13. Liljeström PL (1988) Characterization and applications of the yeast MEL1 gene. Dissertation, University of HelsinkiGoogle Scholar
  14. Liljeström-Suominen PL, Joutsjoki V, Korhola M (1988) Construction of a stable α-galactosidase-producing baker's yeast strain. Appl Environ Microbiol 54:245–249Google Scholar
  15. Lodder J, Khoubokormoff B, Langejan A (1969) Melibiose-fermenting baker's yeast hybrids. Antonie van Leeuwenhoek 35 (suppl, part II): F.9Google Scholar
  16. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  17. Melton DB, Krieg PA, Rebagliati MR, Maniatis T, Zinn K, Green MR (1984) Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Res 12:7035–7056Google Scholar
  18. Mortimer RK, Schild D, Contopolou CR, Kans JA (1989) Genetic map of Saccharomyces cerevisiae. Edition 10. Yeast 5:321–404Google Scholar
  19. Naumov GI (1985) Taxonomic genetics of the Saccharomyces cerevisiae yeasts: fermentation of sugars. In: Naumov GI, Kondratieva VI, Naumova ES (eds) Main problems of genetics of microorganisms. Nauka, Moscow, pp 35–44 (In Russian)Google Scholar
  20. Naumov GI (1989) Identification of melibiose fermentation polymeric genes in Saccharomyces cerevisiae. Dokl Akad Nauk SSSR 304:1475–1477 (in Russian)Google Scholar
  21. Naumov GI, Gudkova NK (1979) Comparative genetics of yeast. XVIII. Microevolution of Saccharomyces bayanus. Sov Genet 15:380–387Google Scholar
  22. Naumov GI, Kondratieva VI, Naumova ES (1986) Methods for hybridization of homothallic yeast diplonts and haplonts. Sov Biotechnol 6:29–32Google Scholar
  23. Post-Beittenmiller MA, Hamilton RW, Hopper JE (1984) Regulation of basal and induced levels of the MEL1 transcript in Saccharomyces cerevisiae. Mol Cell Biol 4:1235–1245Google Scholar
  24. Roberts C, Ganesan AT, Haupt W (1959) Genetics of melibiose fermentation in Saccharomyces italicus var. melibiosi. Heredity 13:499–517Google Scholar
  25. Ruohola H, Liljeström PL, Torkkeli T, Kopu H, Lehtinen P, Kalkkinen N, Korhola M (1986) Expression and regulation of the yeast MEL1 gene. FEMS Microbiol Lett 34:179–185Google Scholar
  26. Sherman F, Fink GR, Lawrence CW (1981) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New YorkGoogle Scholar
  27. Skryabin KG, Eldarov MA, Larionov VL, Bayev AA, Klootwijk J, de Regt VCHF, Veldman GM, Planta RJ, Georgiev OI, Hadjiolov AA (1984) Structure and function of the nontranscribed spacer regions of yeast rDNA. Nucleic Acids Res 12:2955–2968Google Scholar
  28. Sumner-Smith M, Bozzato RP, Skipper N, Davies RW, Hopper JE (1985) Analysis of the inducible MEL1 gene of Saccharomyces carlsbergensis and its secreted product α-galactosidase (melibiase). Gene 36:333–340Google Scholar
  29. Torchia TE, Hopper JE (1986) Genetic and molecular analysis of the GAL3 gene in the expression of the galactose/melibiose regulon of Saccharomyces cerevisiae. Genetics 113:229–246Google Scholar
  30. Torchia TE, Hamilton RW, Cano CL, Hopper JE (1984) Disruption of regulatory gene GAL80 in Saccharomyces cerevisiae: effects on carbon-controlled regulation of the galactose/melibiose pathway genes. Mol Cell Biol 4:1521–1527Google Scholar
  31. Tubb RS, Liljeström PL, Torkkeli T, Korhola M (1986a) Melibiase (MEL) genes in brewing and distilling yeasts. In: Priest FG, Campbell I (eds) Proceedings of the Institute of Brewing Aviemore Symposium 1986. Institute of Brewing, London, pp 298–303Google Scholar
  32. Tubb RS, Liljeström PL, Torkkeli T, Korhola M (1986b) MEL gene polymorphism in strains of Saccharomyces. Yeast 2 (special issue): S396Google Scholar
  33. Turakainen H, Aho S, Korhola M (1988) MEL2 gene from Saccharomyces cerevisiae var. carlsbergensis. Yeast 4 (special issue): S370Google Scholar
  34. Vaughan Martini A, Martini A (1987) Three newly delimited species of Saccharomyces sensu stricto. Antonic van Leeuwenhoek 53:77–84Google Scholar
  35. Vollrath D, Davis RW, Connelly C, Hieter P (1988) Physical mapping of large DNA by chromosome fragmentation. Proc Natl Acad Sci USA 85:6027–6031Google Scholar
  36. Winge Ö, Roberts C (1958) Yeast genetics. In: Cook AH (ed) The chemistry and biology of yeasts. Academic Press, New York, p 123Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Gennadi Naumov
    • 1
  • Hilkka Turakainen
    • 2
  • Elena Naumova
    • 1
  • Sirpa Aho
    • 3
  • Matti Korhola
    • 3
  1. 1.All-Union Scientific-Research Institute for Genetics and Selection of Industrial MicroorganismsMoscowUSSR
  2. 2.Department of GeneticsUniversity of HelsinkiHelsinkiFinland
  3. 3.Research Laboratories of the Finnish State Alcohol Company (Alko Ltd.)HelsinkiFinland

Personalised recommendations