Journal of Comparative Physiology B

, Volume 162, Issue 5, pp 440–447

Metabolic rate during foraging in the honeybee

  • N. M. Balderrama
  • L. O. B. de Almeida
  • J. A. Núñez


The metabolic rate of free-flying honeybees, Apis mellifera ligustica, was determined by means of a novel respirometric device that allowed measurement of CO2 produced by bees foraging under controlled reward at an artificial food source. Metabolic rate increased with reward (sugar flow rate) at the food source. In addition, there was no clear-cut dependence of metabolic rate on load carried during the visit, neither as crop load nor as supplementary weights attached to the thorax. The hypothesis that metabolic rate, as well as foraging and recruiting activities, depend on the motivational state of the foraging bee determined by the reward at the food source is discussed.

Key words

Honeybee Foraging Metabolic rate Crop load Motivation 



crop load (fuel load at the FSS)


(=CL-Wc), fuel consumed during the visit


food source simulator


+dome, respirometric chamber


non-visit time


titration time


visit time

Wc (=Wf-Wi)

load carried at the end of the visit


final weight of the forager


initial weight of the forager


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baker HG, Baker I (1982) Floral nectar sugar constituents in relation to pollinator type. In: Jones CE, Little RJ (eds) Handbook of experimental pollination biology. van Nostrand-Reinhold, New YorkGoogle Scholar
  2. Conway EJ (1950) Microdiffusion analysis and volumetric error. Crosby, Lockwood, LondonGoogle Scholar
  3. Frisch K von (1965) Tanzsprache und Orientierung der Bienen. Springer, Berlin Heidelberg New YorkGoogle Scholar
  4. Frisch K von, Lindauer M (1955) Über die Fluggeschwindigkeit der Bienen und ihre Richtungsweisung bei Seitenwind. Naturewissenschaften 42:377–385PubMedGoogle Scholar
  5. Goldstein A (1964) Biostatistics. Macmillan, New YorkGoogle Scholar
  6. Jongbloed J, Wiersma CAG (1934) Der Stoffwechsel der Honigbiene während des Fliegens. Vergl Physiol 21:519–533Google Scholar
  7. Kacelnik A, Houston AI, Schmid-Hempel P (1986) Central-place foraging in honey bees: the effect of travel time and nectar flow on crop filling. Behav Ecol Sociobiol 19:19–24Google Scholar
  8. Kirk PL (1950) Quantitative ultramicroanalysis. Wiley, New YorkGoogle Scholar
  9. Kremer F (1981) Zur Steuerung der Abflugmagenfüllung bei der Honigbiene (Apis mellifera). Zool Jahrb Physiol 85:249–265Google Scholar
  10. McFarland DJ (1971) Feedback mechanism in Animal Behaviour. Academic Press, London New YorkGoogle Scholar
  11. Nachtigall W, Rothe U, Feller P, Jungmann R (1989) Flight of the honeybee. III. Flight metabolic power calculated from gas analysis, thermoregulation and fuel consumption. J Comp Physiol B 158:729–737Google Scholar
  12. Núñez JA (1966) Quantitative Beziehungen zwischen den Eigenschaften von Futterquellen und dem Verhalten von Sammelbienen. Vergl Physiol 53:142–164Google Scholar
  13. Núñez JA (1970) The relationship between sugar flow and foraging and recruiting behaviour of honeybees (Apis mellifera L.). Anim Behav 18:527–538Google Scholar
  14. Núñez JA (1971) Simulador para estudios de aprendizaje en la abeja Apis mellifera L. Acta Cient Venez 22[Suppl 2]:101–106Google Scholar
  15. Núñez JA (1974) Metabolism and activity of the worker bee. In: Harnaj V, Schwindt-Escalante O (eds) Proc 24th Apimondia Int Apiarist Congr Buenos Aires, pp 298–299Google Scholar
  16. Núñez JA (1977) Circadian variation of flight activity in colonies of Apis mellifera ligustica. J Insect Physiol 23:387–392Google Scholar
  17. Núñez JA (1982) IIoneybee foraging strategies at the food source in relation to its distance from the hive and the rate of sugar flow. J Apic Res 21:37–48Google Scholar
  18. Núñez JA, Fischbarg BD de (1969) Comportamiento de la abeja recolectora de agua. Physis (Buenos Aires) 29:185–196Google Scholar
  19. Núñez JA, Nesse AB, Fischbarg BD de (1970) Consumo de oxígeno de abejas recolectoras. Physis (Buenos Aires) 30:97–104Google Scholar
  20. Rau G (1970) Zur Steuerung der Honigmagenfüllung sammelnder Bienen an einer künstlichen Futterquelle. Z Vgl Physiol 66:1–21Google Scholar
  21. Schifferer G (1952) Über die Entfernungsangabe bei den Tänzen der Bienen. Thesis, University of MunichGoogle Scholar
  22. Schmid-Hempel P (1986) Do honeybees get tired? The effect of load weight on patch departure. Anim Behav 34:1243–1250Google Scholar
  23. Schmid-Hempel P, Kacelnik A, Houston AI (1985) Honeybees maximize efficiency by not filling their crop. Behav Ecol Sociobiol 17:61–66Google Scholar
  24. Schneiderman HA (1960) Discontinuous respiration in insects: role of the spiracles. Biol Bull (Woods Hole, Mass) 119:494–528Google Scholar
  25. Scholze E, Pichler H, Heran H (1964) Zur Entfernungsschätzung der Bienen nach dem Kraftaufwand. Naturwissenschaften 51:69–70Google Scholar
  26. Sotavalta O (1954) On the fuel consumption of the honeybee (Apis mellifera L.) in flight experiments. Ann Bot Soc Zool Fenn Vanamo 16:1–27Google Scholar
  27. Stabentheiner A, Schmaranzer S (1988) Flight-related thermobiological investigations of honeybees (Apis mellifera carnica). In: Nachtigall W (ed) The flying honeybee; aspects of energetics. Biona report, no 6. Fischer, Stuttgart New York, pp 89–102Google Scholar
  28. Varjú D, Núñez JA (1991) What do foraging honeybees optimize? J Comp Physiol A 169:729–736Google Scholar
  29. Wieser W (1986) Bioenergetik. Thieme, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • N. M. Balderrama
    • 1
  • L. O. B. de Almeida
    • 1
  • J. A. Núñez
    • 2
  1. 1.Zoologia Agrícola-UCVMaracayVenezuela
  2. 2.Departmento de Ciencias BiológicasUniversidad de Buenos AiresBuenos AiresArgentina
  3. 3.Buenos AiresArgentina

Personalised recommendations