Applied Microbiology and Biotechnology

, Volume 29, Issue 1, pp 11–18 | Cite as

Immobilized growing lactic acid bacteria with κ-carrageenan — locust bean gum gel

  • Pascal Audet
  • Céline Paquin
  • Christophe Lacroix
Biotechnology

Summary

A cell entrapment process using κ-carrageenan — locust bean gum gel is presented. Streptococcus thermophilus, Lactobacillus bulgaricus and S. lactis were immobilized in small gel beads (0.5–1.0 mm and 1.0–2.0 mm diameter) and fermentations in bench bioreactors were conducted. Viability of entrapped cells, lactose utilization, lactic acid production and cell release rates were measured during fermentation. The procedure was effective for S. thermophilus, L. bulgaricus and S. lactis, and the viability of these bacteria remained very high throughout entrapment steps and subsequent storage. Bead diameter influenced the fermentation rate: smaller beads (0.5–1.0 mm) permitted an increase in release rates, lactose utilization and acid production by entrapped cells, approximating values attained with free cells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adlercreutz P, Holst O, Mattiasson B (1985) Characterization of Gluconobacter oxydans immobilized in calcium alginate. Appl Microbiol Biotechnol 22:1–7Google Scholar
  2. Boyaval P, Lebrun A, Goulet J (1985) Etude de l'immobilisation de Lactobacillus helveticus dans des billes d'alginate de calcium. Le Lait 65:185–199Google Scholar
  3. Buchanan RE, Gibbons NW (1974) Bergey's manual of determinative bacteriology 8th edn. Williams and Wilkins, BaltimoreGoogle Scholar
  4. Cairns P, Morris VJ, Miles MJ, Brownsey GJ (1985) Synergistic behaviour in kappa carrageenan-tara gum mixed gels. In: Phillips GO, Wedlock DJ, Willians PA (eds) Gums and stabilisers for the food industry, 3. Elservier Applied Science Publishers, London, p 597Google Scholar
  5. Chao KC, Haugen MM, Royer GP (1986) Stabilization of κ-carrageenan gel with polymeric amines: use of immobilized cells as biocatalysts at elevated temperatures. Biotechnol bioeng 28:1289–1293Google Scholar
  6. Duran L, Fiszman SM, Costell E (1985) Compression behaviour of kappa-carrageenan gels. Effects of addition of iotacarrageenan and locust bean gum. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilisers for the food industry, 3. Elsevier Applied Science Publishers, London, p 177Google Scholar
  7. Eikmeier H, Rehm HJ (1987) Stability of calcium-alginate during citric acid production of immobilized Aspergillus niger. Appl Microbiol Biotechnol 26:105–111Google Scholar
  8. Gilliland SE (1985) The lactobacilli: milk products. In: Gilliland SE (ed) Bacterial starter cultures for foods. CRC Press, Boca Raton, USA, p 41–55Google Scholar
  9. Gòdia F, Casas C, Castellano B, Solà C (1987) Immobilized cells: behaviour of carrageenan entrapped yeast during continuous ethanol fermentation. Appl Microbiol Biotechnol 26:342–346Google Scholar
  10. Hulst AC, Tramper J, Van't Riet K, Westerbeek JMM (1985) A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol Bioeng 27:870–876Google Scholar
  11. Klein J, Kluge M (1981) Imobilization of microbial cells in polyurethane matrices. Biotechnol Lett 3:65–70Google Scholar
  12. Klein J, Stock J, Vorlop K-D (1983) Pore size and properties of Ca-alginate biocatalysts. Eur J Appl Microbiol Biotechnol 18:86–91Google Scholar
  13. Kolot FB (1984) Immobilized cells for solvent production. Process Biochem 19:7–13Google Scholar
  14. Linse L, Brodelius P (1984) Immobilization of plant protoplasts. Ann NY Acad Sci 434:487–490Google Scholar
  15. Luong JHT (1985) Cell immobilization in κ-carrageenan for ethanol production. Biotechnol Bioeng 27:1652–1661Google Scholar
  16. Miles MJ, Morris VJ, Carroll V (1984) Carob gum κ-carrageenan mixed gels: mechanical properties and X-ray fiber diffraction studies. Macromolecules 17:2443–2447Google Scholar
  17. Nguyen A-L, Luong JHT (1986) Diffusion in κ-carrageenan gel beads. Biotechnol Bioeng 28:1261–1267Google Scholar
  18. Nilsson H, Mosbach R, Mosbach K (1972) The use of bead polymerization of acrylic monomers for immobilization of enzymes. Biochim Biophys Acta 268:253–256Google Scholar
  19. Nilsson K, Birnbaum S, Flygare S, Linse L, Schröder U, Jeppsson U, Larsson P-O, Mosbach K, Brodelius P (1983) A general method for the immobilization of cells with preserved viability. Eur J Appl Microbiol Biotechnol 17:319–326Google Scholar
  20. Prévost H, Divies C, Rousseau E (1985) Continuous yoghurt production with Lactobacillus bulgaricus and Streptococcus thermophilus entrapped in Ca-alginate. Biotechnol Lett 7:247–252Google Scholar
  21. Ridout MJ, Brownsey GJ (1985) Rheological characterization of biopolymer mixed gels. In: Phillips GO, Wedlock DJ, Williams PA (eds) Gums and stabilisers for the food industry, 3. Elsevier Applied Science Publishers, London, p 577Google Scholar
  22. Roy D, Goulet J, LeDuy A (1987) Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J Dairy Sci 70:506–513Google Scholar
  23. Steenson LR, Klaenhammer TR, Swaisgood HE (1987) Calcium alginate-immobilized cultures of lactic streptococci are protected from bacteriophages. J Dairy Sci 70:1121–1127Google Scholar
  24. Takata I, Tosa T, Chibata I (1977) Screening of matrix suitable for immobilization of microbial cells. J Solid-Phase Biochem 2:225–236Google Scholar
  25. Tosa T, Sato T, Mori T, Yamamoto K, Takata I, Nishida Y, Chibata I (1979) Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol Bioeng 21:1697–1709Google Scholar
  26. Wada M, Kato J, Chibata I (1979) A new immobilization of microbial cells: immobilized growing cells using carrageenan gel and their properties. Eur J Applied Microbiol Biotechnol 8:241–247Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • Pascal Audet
    • 1
  • Céline Paquin
    • 1
  • Christophe Lacroix
    • 1
  1. 1.Groupe de Recherche Stela, Département de Sciences et Technologie des AlimentsUniversité LavalSte-FoyCanada

Personalised recommendations