Advertisement

Polar Biology

, Volume 2, Issue 1, pp 27–33 | Cite as

Some ecophysiological aspects of the Antarctic phytoplankton

  • G. Jacques
Article

Summary

Original data presented here come from two antarctic cruises and from an experimental approach on cultures of isolated diatoms from the Indian sector of the Antarctic Ocean. During the summer, the phytoplankton does not seem well adapted to its environment and the growth rate is never above 0.6 doublings per day. It is rather difficult to speak of a peculiar physiology of this plankton if we examine the production versus light responses: Ik lies between 3 and 10 W·m-2 in natural communities as well as in cultures. The original feature is due to the peculiar need of silica for diatoms to reach a maximal assimilation rate. The Ks values lie between 12 and 22 mgat·m-3 Si(OH)4, clearly above the values found in other species where seldom exceed 5. These experimental preliminary data fit well with the observed in situ desequilibrium of the assimilation rates: Si/N close to 6 and Si/P over 90, which are surprising values.

Keywords

Growth Rate Phytoplankton Assimilation Original Data Preliminary Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aruga Y (1965) Ecological studies of photosynthesis and matter production of phytoplankton. 2. Photosynthesis of algae in relation to light intensity and temperature. Bot Mag 78:360–365Google Scholar
  2. Bunt JS (1964) Primary productivity under sea ice in Antarctic waters. 2. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarctic Res Ser 1:27–31Google Scholar
  3. Bunt JS (1968) Some characteristics of microalgae isolated from Antarctic sea ice. In: Llano GA, Schmitt WL (ed) Biology of the antarctic seas (Antarctic research series 11), American Geophysical Union, Washington DC, pp 1–14Google Scholar
  4. Bunt JS, Lee CC (1970) Seasonal primary production in Antarctic sea ice at McMurdo sound in 1967. J Mar Res 28:304–320Google Scholar
  5. Burkholder PR, Mandelli EF (1965) Carbon assimilation of marine phytoplankton in Antarctica. Proc Natl Acad Sci USA 54:437–444Google Scholar
  6. Cloern JE (1979) Empirical model of Skeletonema costatum photosynthetic rate, with applications in the San Francisco Bay estuary. Adv Water Res 1:267–274Google Scholar
  7. Copin-Montegut C, Copin-Montegut G (1978) The chemistry of particulate matter from the south Indian and Antarctic oceans. Deep-Sea Res 25:911–931Google Scholar
  8. Descolas-Gros C (1983) Les voies d'incorporation photosynthétique du carbone du phytoplancton. Signification écologique du dosage des carboxylases et du δ13C en milieu marin. Thèse de Doctorat es Sciences, Université Pierre et Marie Curie, Paris, 99 ppGoogle Scholar
  9. Durbin EG (1974) Studies on the autecology of the marine diatom Thalassiosira nordenskioldii Cleve. 1. The influence of daylength, light intensity and temperature on growth. J Phycol 10:220–225Google Scholar
  10. El-Sayed SZ, Mandelli EF (1965) Primary production in the southeastern Indian Ocean. In: Llano GA (ed) Biology of the antarctic seas (Antarctic research series 5). American Geophysical Union, Washington DC, pp 87–105Google Scholar
  11. El-Sayed SZ, Taguchi S (1981) Primary production and standing crop of phytoplankton along the ice-edge in the Weddell Sea. Deep-Sea Res 28:1017–1032Google Scholar
  12. Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085Google Scholar
  13. Gallegos CL, Platt T (1982) Phytoplankton production and water motion in surface mixed layers. Deep-Sea Res 29:65–76Google Scholar
  14. Grall JR, Jacques G (1982) Communautés phytoplanctoniques antarctiques. In: Jacques G (ed) Campagne océanographique MD 21/Antiprod II (mars 1980). Production pélagique dans le secteur antarctique de l'Océan Indien. CNFRA (Com Natl Fr Rech Antarct) 53:111–129Google Scholar
  15. Groupe Mediprod (1978) Campagne Antiprod I. Marion-Dufresne, 1–28 mars 1977. Resultats campagnes en mer CNEXO 16:1–151Google Scholar
  16. Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. 1. Cyclotella nana Husted and Detonula confervacea (Cleve). Can J Microbiol 8:229–239Google Scholar
  17. Hart TJ (1934) On the phytoplankton of the South-West Atlantic and the Bellingshausen Sea, 1929–1931. Dicovery Rep 8:1–268Google Scholar
  18. Holm-Hansen O, El-Sayed SZ, Franceschini GA, Cuhel RL (1977) Primary production and the factors controlling phytoplankton growth in the Southern Ocean. In: Llano GA (ed) Adaptations within the Antarctic ecosystems. Proc 3rd SCAR Symposium Antarctic Biology. Smithson Institute, Washington DC, pp 11–50Google Scholar
  19. Jacques G (1982) Campagne océanographique MD 21/Antiprod II (mars 1980). Production pélagique dans le secteur antarctique de l'Océan Indien. CNFRA (Com Natl Fr Rech Antarct) 53:141 ppGoogle Scholar
  20. Jacques G, Minas M (1981) Production primaire dans le secteur indien de l'Océan Antarctique en fin d'été. Oceanologica Acta 4:33–41Google Scholar
  21. Jacques G, Fiala M, Oriol L. Production primaire antarctique: étude des facteurs limitants par les tests de fertilisation différentielle (in preparation)Google Scholar
  22. Le Jehan S (1982) Contribution à l'étude des matières organiques et nutritives dans deux écosystèmes eutrophes: cycles de l'azote, du phosphore et du silicium. Thèse de spécialité UBO, Brest, 236 ppGoogle Scholar
  23. Morris I, Farrell K (1971) Photosynthetic rates, gross patterns of carbon dioxide assimilation and activities of ribulose diphosphate carboxylase in marine algae grown at different temperatures. Physiol Plant 25:372–377Google Scholar
  24. Morris I, Glover HE (1974) Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar Biol 24:147–154Google Scholar
  25. Mc Caull WA, Platt T (1977) Diel variations in the photosynthetic parameters of coastal marine phytoplankton. Limnol Oceanogr 22:723–731Google Scholar
  26. Platt T, Jassby AP (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12:421–430Google Scholar
  27. Ryther JH (1956) Photosynthesis in the Ocean as a function of light intensity. Limnol Oceanogr 1:61–70Google Scholar
  28. Saijo Y, Kawashima T (1964) Primary productivity in the Antarctic Ocean. J Oceanogr Soc Jpn 19:190–196Google Scholar
  29. Smayda TJ (1969) Experimental observations on the influence of temperature, light and salinity on celle division of the marine diatom Detonula confervacea (Cleve) Gran. J Phycol 5:150–157Google Scholar
  30. Smith AE, Morris I (1980) Synthesis of lipid during photosynthesis by phytoplankton of the Southern Ocean. Science 207:197–199Google Scholar
  31. Steemann Nielsen E, Hansen VK (1959) Light adaptation in marine phytoplankton populations and its interrelation with temperature. Physiol Plant 12:353–370Google Scholar
  32. Swift E, Durbin EG (1972) The phased division and cytological characteristics of Pyrocystis spp. can be used to estimate doubling times of the population in the sea. Deep-Sea Res 19:189–198Google Scholar
  33. Verity PG (1981) Effects of temperature, irradiance, and daylength on the marine diatom Leptocylindrus danicus Cleve. 1. Photosynthesis and cellular composition. J Exp Mar Biol Ecol 55:79–91Google Scholar
  34. Yentsch CS, Lee RW (1966) A study of photosynthetic light reactions, and a new interpretation of sun and shade phytoplankton. J Mar Res 24:319–331Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • G. Jacques
    • 1
  1. 1.Laboratoire AragoBanyuls-sur-MerFrance

Personalised recommendations