Journal of Philosophical Logic

, Volume 16, Issue 2, pp 165–202

Skolem's paradox and constructivism

  • Charles McCarty
  • Neil Tennant
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. BeesonM., Foundations of Constructive Mathematics (Springer Verlag, Berlin, 1985).Google Scholar
  2. BellJ. and SlomsonA., Models and Ultraproducts (North Holland, Amsterdam, 1971).Google Scholar
  3. Benacerraf, P., ‘What numbers could not be’, Philosophical Review 74 (1965).Google Scholar
  4. BenacerrafP., ‘Skolem and the Skeptic’, Proceedings of the Aristotelian Society, SupplementaryVolumeLIX (1985), pp. 85–115.Google Scholar
  5. DiaconescuR., ‘Axiom of choice and complementation’, Proceedings of the American mathematical Society 51 (1975), 175–8.Google Scholar
  6. DummettM., (with the assistance of R. Minio), Elements of Intuitionism (Oxford University Press, 1977).Google Scholar
  7. Fourman, M. P. and Hyland, J. M. E., ‘Sheaf models for analysis’, in eds. M. P. Fourman, C. J. Mulvey and D. S. Scott, Applications of Sheaves (Springer Lecture Notes in Mathematics, no. 753, 1979).Google Scholar
  8. FriedmanH., ‘The consistency of classical set theory relative to a set theory with intuitionistic logic’, Journal of Symbolic Logic 38 (1973), pp. 315–319.Google Scholar
  9. Grandy, R. E., Advanced Logic for Applications (D. Reidel, 1977).Google Scholar
  10. Grayson, R. J., Intuitionistic Set Theory (D. Phil. Thesis, University of Oxford, 1978).Google Scholar
  11. Greenleaf, N., ‘Liberal constructive set theory’, ed. F. Richman: Constructive Mathematics, Proceedings, New Mexico, 1980, Springer Lecture Notes in Mathematics No. 873 (Berlin, 1981), pp. 213–240.Google Scholar
  12. Keisler, H. J., ‘On the quantifier “there exist uncountably many”’, Notices of the American Mathematical Society 15 (1968), p. 654.Google Scholar
  13. KreiselG., ‘Weak completeness of intuitionistic predicate logic’, Journal of Symbolic Logic 27 (1962), 139–158.Google Scholar
  14. Kreisel, G. and Dyson, V., ‘Analysis of Beth's semantic construction of intuitionistic logic’, Technical report no. 3, Applied Mathematics and Statistics laboratories, Stanford University, Part II (1961).Google Scholar
  15. LeivantD., ‘Notes on the completeness of the intuitionistic predicate calculus’, Report ZW 40/72, Mathematisch Centrum, Amsterdam, 1972.Google Scholar
  16. LeivantD., ‘Syntactic translations and provably recursive functions’, Journal of Symbolic Logic 50 (1985), 682–8.Google Scholar
  17. McCarty, D. C., Realizability and Recursive Mathematics (D. Phil. Thesis, University of Oxford, 1984). Released as a technical report by the Department of Computer Science, Carnegie-Mellon University, Pittsburgh, No. CMU-C2-84-131; revised version forthcoming as Computation and Construction (Oxford University Press).Google Scholar
  18. McCarty, D. C., ‘Constructive validity is nonarithmetic’, (1986) (submitted to Journal of Symbolic Logic).Google Scholar
  19. Minc, G. E., ‘The Skolem method in intuitionistic calculi’, Proceedings of the Steklov Institute of Mathematics 121 (1972): Logical and Logico-Mathematical Calculi, 2. (American Mathematical Society, 1974), pp. 73–109.Google Scholar
  20. Minio, R., Finite and Countable Sets in Intuitionistic Analysis (M.Sc. Dissertation, University of Oxford, 1974), 35 pp.Google Scholar
  21. MostowskiA., ‘An undecidable arithmetical statement’, Fundamenta Mathematicae 36 (1949), pp. 143–164.Google Scholar
  22. PowellW. C., ‘Extending Gödel's negative translation to ZF’, Journal of Symbolic Logic 40 (1975), 221–229.Google Scholar
  23. Quine, W. V. O., Methods of Logic, 2nd edition (Holt, Rinehart and Winston, 1959).Google Scholar
  24. QuineW. V. O., Set Theory and Its Logic (Belnap Press, Harvard, 1963).Google Scholar
  25. Rogers, H., Theory of Recursive Functions and Effective Computability (McGraw-Hill, 1967).Google Scholar
  26. Skolem, T., ‘Logische-kombinatorische Untersuchungen über die Erfüllbarkeit und Beweisbarkeit mathematischen (sic) Sätze nebst einem Theoreme über dichte Mengen’, 1920; pp. 103–135, in Fenstad, J. (ed.), Selected Works in Logic, Universitetsforlaget, Oslo, 1970.Google Scholar
  27. Skolem, T., ‘Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre’, 1922; ibid, pp. 137–152.Google Scholar
  28. SmorynskiC., ‘The axiomatization problem for fragments’, Annals of Mathematical Logic 14 (1978), pp. 193–227.Google Scholar
  29. deSwartH. ‘Another intuitionistic completeness proof’, Journal of Symbolic Logic 41 (1976), pp. 644–662.Google Scholar
  30. Tennant, N., Natural Logic (Edinburgh University Press, 1978).Google Scholar
  31. TennantN., ‘Proof and Paradox’, Dialectica 36 (1982), pp. 265–296.Google Scholar
  32. Troelstra, A. S., ‘Completeness and validity for intuitionistic predicate logic’, Proceedings of the “Séminair internationale d'été et Colloque international de Logique à Clermont-Ferrand”, July 1975 (1977).Google Scholar
  33. van Dalen, J., ‘Lecutures on intuitionism’, in Cambridge Summer School in Mathematical Logic, edited by A. Mathias and H. Rogers, pp. 1–94 (Springer 1973).Google Scholar
  34. VaughtR., ‘The completeness of the logic with the added quantifier “there are uncountably many”’, Fundamenta Mathematicae 54 (1964), pp. 303–304.Google Scholar
  35. VeldmanW., ‘An intuitionistic completeness theorem for intuitionistic predicate logic’, Journal of Symbolic Logic 41 (1976), pp. 159–166.Google Scholar
  36. WrightC., ‘Skolem and the Skeptic’, Proceedings of the Aristotelian Society, SupplementaryVolumeLIX (1985), pp. 117–137.Google Scholar

Copyright information

© D. Reidel Publishing Company 1987

Authors and Affiliations

  • Charles McCarty
    • 1
    • 2
    • 3
  • Neil Tennant
    • 1
    • 2
    • 3
  1. 1.Department of Computer ScienceUniversity of EdinburghEdinburghScotland
  2. 2.the Centre for Cognitive ScienceUniversity of EdinburghEdinburghScotland
  3. 3.Department of Philosophy, The FacultiesAustralian National UniversityCanberraAustralia

Personalised recommendations