Advertisement

Applied Microbiology and Biotechnology

, Volume 27, Issue 1, pp 6–10 | Cite as

Bioconversion of citronellol by Botrytis cinerea

  • P. Brunerie
  • I. Benda
  • G. Bock
  • P. Schreier
Biotechnology

Summary

Bioconversion of citronellol 1 was studied with four strains of Botrytis cinerea. Using grape must predominant transformation of 1 to 2,6-dimethyl-1,8-octandiol 2 and (E)-2,6-dimethyl-2-octen-1,8-diol 3 was observed. In minor amounts 2,6-dimethyl-2,8-octandiol 4, two p-menthan-3,8-diol isomers 5a, 5b, (Z)-2,6-dimethyl-2-octen-1,8-diol 6, isopulegol 7, 2-methyl-2-hepten-6-one-1-ol 8 and 2-methyl-γ-butyrolactone 9 were found. Using a small amount of grape must in a synthetic medium (1:700) the bioconversion products 2, 4, 5a and 5b were absent, but additionally 2-methyl-2-hepten-6-one 10, 2-methyl-2-hepten-6-ol 11 and citronellic acid 12 were detected. The results obtained were strongly dependent on the strains used; one strain did not show any metabolic activity against 1. The bioconversion products were identified by capillary gas chromatography (HRGC) and coupled HRGC techniques, i.e. on-line — mass spectrometry (HRGC-MS) and — Fourier transform infrared spectroscopy (HRGC-FTIR).

Keywords

Mass Spectrometry Fourier Transform Fourier Transform Infrared Spectroscopy Infrared Spectroscopy Metabolic Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balsevich J (1985) Biotransformation of 10-hydroxygeraniol and related compounds by a cell suspension culture of Catharanthus roseus: The formation of reduced products. Planta Med 51:128–132Google Scholar
  2. Bauer K, Garbe D (1985) Common fragrance and flavor materials. Preparation, properties and uses, VCH Verlagsgesellschaft. WeinheimGoogle Scholar
  3. Behr D, Wahlberg I, Nishida T, Enzell CR (1978) Tobacco chemistry. 45. (2E,6S)-2,6-dimethyl-2,7-octadiene-1,6-diol, a new monoterpenoid from Greek tobacco. Acta Chem scand 32B:228–229PubMedGoogle Scholar
  4. Bock G, Benda I, Schreier P (1986) Biotransformation of linalool by Botrytis cinerea. J Food Sci 51:659–662Google Scholar
  5. Bock G, Benda I, Schreier P (1987) Bioconversion of cinnamic aldehyde and unsaturated acids by Botrytis cinerea. Z Lebensm Unters Forsch in pressGoogle Scholar
  6. Boidron JN (1978) Relation between terpenic substances and grape quality (Role of Botrytis cinerea). Ann Technol Agric 27:141–145Google Scholar
  7. Drawert F, Rapp A (1968) Gaschromatographische Untersuchung pflanzlicher Aromen. I. Anreicherung, Trennung und Identifizierung von Aromastoffen in Traubenmosten und Weinen. Chromatographia 1:446–457Google Scholar
  8. Gramatica P, Manitto P, Poli P (1985) Chiral synthetic intermediates via asymmetric hydrogenation of α-methyl-α,β-unsaturated aldehydes by baker's yeast. J Org Chem 50:4625–4628Google Scholar
  9. Rapp A, Mandery H, Niebergall H (1986) Neue Monoterpendiole in Traubenmost und Wein sowie in Kulturen von Botrytis cinerea. Vitis 25:79–84Google Scholar
  10. Schreier P (1984) Formation of wine aroma. In: Nykänen L, Lehtonen P (eds) Flavour research of alcoholic beverages. Vol 3. Foundation for biotechnological and industrial fermentation research, pp 9–37Google Scholar
  11. Seubert W, Fass E (1964) Untersuchungen über den bakteriellen Abbau von Isoprenoiden. IV. Reinigung und Eigenschaften der β-Isohexenylglutaconyl-CoA-hydratase und β-Hydroxy-β-isohexenylglutaryl-CoA-lyase. Biochem Z 341:23–34Google Scholar
  12. Seubert W, Remberger U (1963) Untersuchungen über den bakteriellen Abbau von Isoprenoiden. II. Die Rolle der Kohlensäure. Biochem Z 338:245–264Google Scholar
  13. Shimizu J, Uehara M, Watanabe M (1982) Transformation of terpenes in grape must by Botrytis cinerea. Agr Biol Chem 46:1339–1344Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. Brunerie
    • 1
  • I. Benda
    • 2
  • G. Bock
    • 3
  • P. Schreier
    • 3
  1. 1.Pernod RicardCentre de RechercheCréteilFrance
  2. 2.Baverische Landesanstalt für Weinbau und GartenbauWürzburgGermany
  3. 3.Lehrstuhl für LebensmittelchemieUniversität WürzburgWürzburgGermany

Personalised recommendations