Advertisement

Intensive Care Medicine

, Volume 14, Supplement 1, pp 488–491 | Cite as

Right ventricular dysfunction in patients with septic shock

  • J. F. Dhainaut
  • J. J. Lanore
  • J. M. de Gournay
  • M. F. Huyghebaert
  • F. Brunet
  • D. Villemant
  • J. F. Monsallier
Septic Shock

Abstract

Using a rapid computerized thermodilution method, we examined the evolution of right ventricular performance in 23 patients with septic shock. Nine survived the episode of septic shock. The other 14 patients died of refractory circulatory shock. Significant right ventricular systolic dysfunction, defined as decreased ejection fraction (-39%) and right ventricular dilation (+38%) was observed in all patients with septic shock. However, in the survivors, increased right ventricular preload may prevent hemodynamic evidence of right ventricular pump failure by utilizing the Frank-Starling mechanism to maintain stroke volume. Conversely, in the nonsurvivors, right ventricular dysfunction was more prononced two days after the onset of septic shock, leading to a fall in stroke. In the last patients, a decrease in contractility appears to be the major factor accounting for decreased right ventricular performance, as evidenced by the marked increase in end-systolic volume (+27%) without significant change in pulmonary artery pressure, during the later stage of septic shock. The observed right ventricular pump failure then appears associated with an alteration in diastolic mechanical properties of this ventricle, as suggested by a leftward displacement of the individual pressure-volume curves.

Key words

RV function Cardiac failure Septic shock 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    MacCabe WR, Kreger BE, Johns M (1972) Type specific and cross-reactive antibodies in gram negative bacteremia. N Engl J Med 287:261Google Scholar
  2. 2.
    Lefer AM (1970) Role of a myocardial depressant factor in the pathogenesis of circulatory shock. Fed Proc 29:1836Google Scholar
  3. 3.
    Carli A, Auclair MC, Bleichner G, Weber S, Lechat P, Monsallier JF (1978) Inhibited response to isoproterenol and altered action potential of beating rat heart cells by human serum in septic shock. Circ Shock 5:85Google Scholar
  4. 4.
    Parrillo JE, Burch C, Shelhamer JH, Parker MM, Natanson C, Schuette W (1985) A circulating myocardial depressant substance in humans with septic shock. J Clin Invest 76:1539Google Scholar
  5. 5.
    Siegel JH, Cerra FB, Coleman B, Giovannini I, Shedye M, Border JH, McMenamy RH (1979) Physiological and metabolic correlations in human sepsis. Surgery 86:163Google Scholar
  6. 6.
    Dhainaut JF, Huyghebaert MF, Monsallier JF, Lefevre G, Dall'Ava-Santucci, Brunet F, Villemant D, Carli A, Raichvarg D (1987) Coronary hemodynamics and myocardial metabolism of lactate, free fatty acids, glucose and ketones in human septic shock. Circulation 75:533Google Scholar
  7. 7.
    Cunnion RE, Schaer GL, Parker MM, Natanson C, Parrillo JE (1986) The coronary circulation in human septic shock. Circulation 73:637Google Scholar
  8. 8.
    Clowes GHA Jr, Farrington GH, Zuschneid W, Cossett GR, Saravis C (1970) Circulating factors in the etiology of pulmonary insufficiency and right heart failure accompanying severe sepsis (peritonitis). Ann Surg 171:663Google Scholar
  9. 9.
    Sibbald WJ, Paterson NAM, Holliday RL, Anderson RA, Lobb TR, Duff JH (1978) Pulmonary hypertension in sepsis. Chest 73:583Google Scholar
  10. 10.
    Hoffman MJ, Greenfield LJ, Sugerman HJ, Tatum JL (1983) Unsuspected RV dysfunction in shock and sepsis. Ann Surg 198:307Google Scholar
  11. 11.
    Kimchi A, Ellrodt AG, Berman DS, Riedinger MS, Swan HJC, Murata GH (1984) RV performance in septic shock: a combined radionuclide and hemodynamic study. J Am Coll Cardiol 4:945Google Scholar
  12. 12.
    Vincent JL, Thirion M, Brimioulle S, Lejeune P, Kahn RJ (1986) Thermodilution measurement of RV ejection fraction with a modified pulmonary artery catheter. Intensive Care Med 12:33Google Scholar
  13. 13.
    Dhainaut JF, Brunet F, Monsallier JF, Villemant D, Devaux JY, Konno M, de Gournay JM, Armaganidis A, Iotti G, Huyghbaert MF, Lanore JJ (1987) Bedside evaluation of RV performance using a rapid computerized thermodilution method. Crit Care Med 15:148Google Scholar
  14. 14.
    Dhainaut JF, Brunet F, Villemant D, de Gournay JM, Huyghebaert MF, Armaganidis A, Monsallier JF (1986) Amélioration de l'exactitude de la mesure de la fraction d'éjection ventriculaire droite par thermodilution. Réan Soins Intens Méd Urg 2:257 (Abstr)Google Scholar
  15. 15.
    Sibbald WJ, Driedger AA (1983) RV function in acute disease states: pathophysiologic considerations. Crit Care Med 11:339Google Scholar
  16. 16.
    Dhainaut JF, Devaux JY, Brunet F, Huyghebaert MF, Villemant D, de Gournay JM, Armaganidis A, Monsallier JF (1986) Evolution de la performance biventriculaire des patients atteints de SDRA. Réan Soins Intens Méd Urg 2:241 (Abstr)Google Scholar
  17. 17.
    Schneider AJ, Teule GJJ, Kester ADM, Heidendal GAK, Thijs LG (1986) Biventricular function during volume loading in porcine E. coli septic shock, with emphasis on RV function. Circ Shock 18:53Google Scholar
  18. 18.
    Parker MP, Shelhamer JH, Bacharach SL, Green MV, Natanson C, Frederick TM, Damske BA, Parrillo JE (1984) Profound but reversible myocardial depression in patients with septic shock. Ann Intern Med 100:483PubMedGoogle Scholar
  19. 19.
    Guyton AC, Lindsey AW, Gilluly JJ (1954) The limits of RV compensation following acute increases in pulmonary circulatory resistance. Circ Res 2:326Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • J. F. Dhainaut
    • 1
  • J. J. Lanore
    • 1
  • J. M. de Gournay
    • 1
  • M. F. Huyghebaert
    • 1
  • F. Brunet
    • 1
  • D. Villemant
    • 1
  • J. F. Monsallier
    • 1
  1. 1.Medical ICUCochin Port-Royal University HospitalParisFrance

Personalised recommendations