Applied Microbiology and Biotechnology

, Volume 26, Issue 4, pp 333–337 | Cite as

Chlortetracycline production with immobilized Streptomyces aureofaciens

I. Batch culture
  • Wafaa Mahmoud
  • Hans-Jürgen Rehm
Biotechnology

Summary

Spores of Streptomyces aureofaciens ATCC 10762 were immobilized in calcium alginate, and the chlortetracycline production was examined. The influence of alginate concentration and spore concentration on the antibiotic production was investigated.

By optimizing the nutrient composition of the production medium, the chlortetracycline yields of batch-fermented immobilized microorganisms could be increased fourfold. Chlortetracycline production by free mycelia was 40% of that with immobilized microorganisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajpai PK, Wallace JB, Margaritis A (1985) Effects of calcium chloride concentration on ethanol production and growth of immobilized Zymomonas mobilis. J Ferment Technol 63:199–203Google Scholar
  2. Behal V, Hostalek Z, Vanek Z (1979) Anhydrotetracycline oxygenase activity and biosynthesis of tetracycline in Streptomyces aureofaciens. Biotechnol Lett 1:177–182Google Scholar
  3. Behal V, Gregrova-Prusakova J, Hostalek Z (1982) Effect of inorganic phosphate and benzyl thiocyanate on the activity of anhydrotetracycline oxygenase in Streptomyces aureofaciens. Folia Microbiol 27:102–106Google Scholar
  4. Behal V, Neuzil J, Hostalek Z (1983) Effect of tetracycline derivatives and some cations on the activity of anhydrotetracycline oxygenase. Biotechnol Lett 5:537–542Google Scholar
  5. Biffi G, Boritti G, DiMarco A, Pennella P (1954) Metabolic behaviour and chlortetracycline production by Streptomyces aureofaciens in liquid culture. Appl Microbiol 2:288–293Google Scholar
  6. Colombo AL, Crespi-Perellino N, Grein A, Minghetti A, Spalla C (1981) Metabolic and genetic aspects of the relationship between growth and tetracycline production in Streptomyces aureofaciens. Biotechnol Lett 3:71–76Google Scholar
  7. DiMarco A (1956) Metabolism of Streptomyces aureofaciens and biosynthesis of chlortetracycline. Giorn Microbiol 2:285Google Scholar
  8. Dornbush AC, Abbey A (1972) Microbiological assay of the tetracyclines. In: Kavanagh F (ed) Analytical Microbiology Vol II. Academic Press, New York and London, pp 365–383Google Scholar
  9. Freeman A, Aharonowitz Y (1981) Immobilization of microbial cells in crosslinked prepolymerized, linear polyacrylamide gels: antibiotic production by immobilized Streptomyces clavuligerus cells. Biotechnol Bioeng 23:2747–2759Google Scholar
  10. Herbert D, Phipps PJ, Strange RE (1971) Chemical analysis of microbial cells. In: Norris JR, Ribbons DW (eds) Methods in Microbiology Vol 5B. Academic Press, London and New York, pp 209–344Google Scholar
  11. Hostalek Z (1964a) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. I. The effect of interrupted aeration, inorganic phosphate and benzyl thiocyanate on chlortetracycline biosynthesis. Folia Microbiol 9:78Google Scholar
  12. Hostalek Z (1964b) Relationship between the carbohydrate metabolism of Streptomyces aureofaciens and the biosynthesis of chlortetracycline. II. The effect of benzyl thocyanate on the respiration of washed mycelium of Streptomyces aureofaciens. Floira Microbiol 9:89Google Scholar
  13. Hostalek Z, Blumauerova M, Vanek Z (1979) Tetracycline antibiotics. In: Rose AH (ed) Economic microbiology, Vol 3 Secondary products of metabolism. Academic Press, London, New York, San Francisco, pp 293–354Google Scholar
  14. Kopp B, Rehm HJ (1983) Alkaloid production by immobilized mycelia of Claviceps purpurea. Eur J Appl Microbiol Biotechnol 18:257–263Google Scholar
  15. Kopp B, El-Sayed AH, Mahmoud W, Rehm HJ (1984) Production of ergot alkaloids, penicillins and chlortetracycline by immobilized microorganisms. Third Eur Congr Biotechnol, München, Vol I. Verlag Chemie, Weinheim, Deerfield Beach, Basel, pp 281–286Google Scholar
  16. Kurylowicz W, Kurzatkowski W, Williams ST, Woznicka W, Paszkiewicz A (1975) Atlas of ultrastructure of Streptomyces in course of biosynthesis of antibiotics. Polish Medical Publishers, WarsawGoogle Scholar
  17. Mahmoud M (1986) Chlortetracyclinbildung mit immobilisierten Zellen von Streptomyces aureofaciens. Dissertation Universität Münster, Fachbereich BiologieGoogle Scholar
  18. Mahmoud W, Rehm HJ (1986) Morphological examination of immobilized Streptomyces aureofaciens during chlortetracycline fermentation. Appl Microbiol Biotechnol 23: 305–310Google Scholar
  19. Malik VS, Vining LC (1972) Effect of chloramphenicol on its biosynthesis by Streptomyces species 3022 a. Canad J Microbiol 18:137–143Google Scholar
  20. Martin JF (1977) Control of antibiotic synthesis by phosphate. In: Ghose TK, Fiechter A, Blakebrough N (eds) Advances in Biochemical Engineering, Vol 6. Springer Verlag, Berlin, Heidelberg, New York, pp 105–127Google Scholar
  21. McCormick JRD, Sjolander NO, Johnson S, Doerschuk AP (1959) Biosynthesis of tetracyclines. II. Simple, defined media for growth of Streptomyces aureofaciens and elaboration of 7-chlortetracycline. J Bacteriol 77:475–477Google Scholar
  22. Morikawa Y, Karube I, Suzuki S (1979) Penicillin G production by immobilized whole cells of Penicillium chrysogenum. Biotechnol Bioeng 21:261–270Google Scholar
  23. Nilsson I, Ohlson S (1982) Columnar denitrification of water by immobilized Pseudomonas denitrificans cells. Eur J Appl Microbiol Biotechnol 14:86–90Google Scholar
  24. Ogaki M, Sonomoto K, Nakajima H, tanaka A (1986) Continuous production of oxytetracycline by immobilized growing Streptomyces rimosus cells. Appl Microbiol Biotechnol 24:6–11Google Scholar
  25. Suzuki S, Karube I (1979) Production of antibiotics and enzymes by immobilized whole cells. In: Venkatasubramanian K (ed) Immobilized microbial cells. ACS Symposium Series 106, pp 59–72Google Scholar
  26. Veelken M, Pape H (1982) Production of tylosin and nikkomycin by immobilized Streptomyces cells. Eur J Appl Microbiol Biotechnol 15:206–210Google Scholar
  27. Veelken M, Pape H (1984) Production of nikkomycin by immobilized Streptomyces cells-physiological properties. Appl Microbiol Biotechnol 19:146–152Google Scholar
  28. Venkatasubramanian K, Vieth WR (1979) Immobilized microbial cells. In: Bull MJ (ed) Progress in industrial microbiology, Vol 15. Elsevier, Amsterdam, Oxford, New York, pp 61–86Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Wafaa Mahmoud
    • 1
  • Hans-Jürgen Rehm
    • 1
  1. 1.Institut für MikrobiologieUniversität MünsterMünsterFederal Republic of Germany
  2. 2.Department of Microbiology, Faculty of PharmacyZagazig UniversityZagazigEgypt

Personalised recommendations