Advertisement

Archive for Rational Mechanics and Analysis

, Volume 29, Issue 1, pp 32–57 | Cite as

Existence and nonuniqueness of rectangular solutions of the Bénard problem

  • P. H. Rabinowitz
Article

Keywords

Neural Network Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Krishnamurti, R., Finite amplitude thermal convection with changing mean temperature: The stability of hexagonal flows and the possibility of finite amplitude instability. Dissertation, UCLA, 1967.Google Scholar
  2. 2.
    Kosmieder, E.L., On convection on a uniformly heated plane. Beiträge zur Physik der Atmosphäre 39, 1–11 (1966).Google Scholar
  3. 3.
    Pearson, J.R.A., On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958).Google Scholar
  4. 4.
    Chandrasekar, S., Hydrodynamic and hydromagnetic stability. Oxford University Press 1961.Google Scholar
  5. 5.
    Malkus, W.V.R., & G. Veronis, Finite amplitude cellular convection. J. Fluid Mech. 4, 225–260 (1958).Google Scholar
  6. 6.
    Busse, F., Das Stabilitätsverhalten der Zellularkonvection bei endlicher Amplitude. Dissertation, University of Munich, 1962. (Translation from the German by S.H. Davis, Rand Corp., Santa Monica, Calif. 1966.)Google Scholar
  7. 8.
    Segel, L.A., The structure of nonlinear cellular solutions of the Boussinesq equations. J. Fluid Mech. 21, 345–358 (1965).Google Scholar
  8. 9.
    Chorin, A.J., Numerical study of thermal convection in a fluid layer heated from below. New York University, Courant Institute of Mathematical Sciences technical report, 1966.Google Scholar
  9. 10.
    Joseph, D.D., On the stability of the Boussinesq equations. Arch. Rational Mech. Anal. 20, 59–71 (1965).Google Scholar
  10. 11.
    Velte, W., Stabilitätsverhalten und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen. Arch. Rational Mech. Anal. 16, 97–125 (1964).Google Scholar
  11. 12.
    Velte, W., Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem. Arch. Rational Mech. Anal. 22, 1–14 (1966).Google Scholar
  12. 13.
    Iudovich, V.I., Example of the generation of a secondary stationary or periodic flow when there is loss of stability of the laminar flow of a viscous incompressible fluid. J. of Applied Math. and Mechanics (translation of PMM) 29, 527–544 (1965).Google Scholar
  13. 14.
    Friedrichs, R.O., & J. J. Stoker, The nonlinear boundary value problem of the buckled plate. Amer. J. Math. 63, 839–888 (1941).Google Scholar
  14. 15.
    Odeh, F., & I. Tadjbakhsh, Equilibrium states of elastic rings. To appear in J. Math. Anal. and Appl.Google Scholar
  15. 16.
    Berger, M., & P. Fife, On Von Kármán'sequations and the buckling of a thin elastic plate. Bull. A.M.S. 72, 1006–1011 (1966).Google Scholar
  16. 17.
    Wolkowisky, J., Existence of buckled states of circular plates. To appear in Comm. Pure and Appl. Math.Google Scholar
  17. 18.
    Berger, M., On von Kármán'sequations and the buckling of a thin elastic plate (I). The clamped plate, Bifurcation theory seminar notes. New York University, Courant Institute of Mathematical Sciences, 1967.Google Scholar
  18. 19.
    Kolodner, I.I., Heavy rotating string — a nonlinear eigenvalue problem. Comm. Pure and Appl. Math. 8, 395–408 (1955).Google Scholar
  19. 20.
    Odeh, F., Existence and bifurcation theorems for the Ginzburg-Landau equations. To appear in J. Math. Phys.Google Scholar
  20. 21.
    Ladyzhenskaya, O.A., The mathematical theory of viscous incompressible flow. New York: Gordon and Breach 1963.Google Scholar
  21. 22.
    Courant, R., & D. Hilbert, Methods of mathematical physics, V. 1. New York: Interscience 1953.Google Scholar
  22. 23.
    Kirchgässner, K., Die Instabilität der Strömung zwischen zwei rotierenden Zylindern gegenüber Taylor-Wirbeln für beliebige Spaltbreiten. Z.A.M.P. 12, 14–30 (1961).Google Scholar
  23. 24.
    Karlin, S., Total positivity and applications V.I. Stanford Univ. Press, Stanford, Calif., to appear Dec. 1967.Google Scholar
  24. 25.
    Krein, M.G., & M.A. Rutman, Linear operators leaving invariant a cone in a Banach space, Translations of the A.M.S., Series 1, 10, 1962, pp. 199–325.Google Scholar
  25. 26.
    Reid, W.H., & D.L. Harris, Some further results on the Bénard problem. Phys. Fluids 1, 102–110 (1958).Google Scholar
  26. 27.
    Dunford, N., & J.T. Schwartz, Linear Operators, Part I: General Theory. New York: Interscience 1958.Google Scholar
  27. 28.
    Iudovich, V.I., On the equations of steady state convection. P.M.M. 27, 295–300 (1963).Google Scholar
  28. 29.
    Rabinowitz, P.H., Periodic solutions of nonlinear hyperbolic partial differential equations. Comm. Pure and Appl. Math. 20, 145–205 (1967).Google Scholar
  29. 30.
    Nirenberg, L., On elliptic partial differential equations. Ann. Scuola Norm. Super. Pisa, Ser. 3, 13, 1–48 (1959).Google Scholar
  30. 31.
    Douglis, A., & L. Nirenberg, Interior estimates for elliptic systems of partial differential equations. Comm. Pure and Appl. Math. 8, 503–538 (1955).Google Scholar
  31. 32.
    Karlin, S., The existence of eigenvalues for integral operators. Trans. Amer. Math. Soc. 113, 1–17 (1964).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • P. H. Rabinowitz
    • 1
  1. 1.Department of MathematicsStanford UniversityStanford

Personalised recommendations