Archive for Rational Mechanics and Analysis

, Volume 75, Issue 4, pp 349–372 | Cite as

The principle of minimal gravitational coupling

  • Ian M. Anderson


The principle of minimal gravitational coupling requires that the total Lagrangian for the field equations of general relativity consist of two additive parts, one part corresponding to the free gravitational Lagrangian and the other part to external source fields in curved spacetime. For source fields characterized by scalars, vectors and two-component spinors we prove that this additive decomposition of the total Lagrangian is an inevitable consequence of certain very general assumptions concerning the Euler-Lagrange expressions arising from the total Lagrangian.


Neural Network General Relativity Complex System Nonlinear Dynamics Field Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, I. M., Mathematical foundations of the Einstein field equations. Ph. D. Thesis (unpublished), University of Arizona (1976).Google Scholar
  2. 2.
    Anderson, I. M., Tensorial Euler-Lagrange expressions and conservation laws. Aequations Mathematicae 17, 255–291 (1978).Google Scholar
  3. 3.
    Anderson, I. M., On the structure of divergence-free tensors. J. Math. Phys., 19, 2570–2575 (1978).Google Scholar
  4. 4.
    Aragone, C. & S. Deser, Constraints on gravitationally coupled tensor fields. II Nuovo Cimento 3 A N. 4, 709–720 (1971).Google Scholar
  5. 5.
    Corson, E. M., An Introduction to Tensors, Spinors and Relativistic Wave Equations. London: Blackie and Son, Ldt. 1955.Google Scholar
  6. 6.
    du Plessis, J. C., Tensorial concomitants and conservation laws. Tensor 20, 347–360 (1969).Google Scholar
  7. 7.
    Einstein, A., Hamiltonsches Prinzip der allgemeinen Relativitätstheorie. Sitzber. Preuss. Akad. Wiss., 1916, 1111–1116.Google Scholar
  8. 8.
    Horndeski, G. W., Tensorial concomitants of relative tensors and linear connections. Utilitas Math., 9, 3–31 (1976).Google Scholar
  9. 9.
    Horndeski, G. W. & D. Lovelock, Scalar tensor field theories. Tensor 24, 79–92 (1972).Google Scholar
  10. 10.
    Lovelock, D., The uniqueness of the Einstein field equations in a four-dimensional space. Arch. Rational Mech. Analy., 33, 54–70 (1969).Google Scholar
  11. 11.
    Lovelock, D., The Einstein tensor and its generalizations. J. Math. Phys. 12, 498–501 (1971).Google Scholar
  12. 12.
    Misner, C. W., Thorne, K. S., & J. A. Wheeler, Gravitation. San Francisco: W. H. Freeman and Co. 1973.Google Scholar
  13. 13.
    Pirani, F. A. E., Lectures in General Relativity, In S. Deser and K. W. Fords (eds.), Brandeis Summer Institute in Theoretical Physics, Volume 1, Englewood, NJ.: Prentice Hall, 1965.Google Scholar
  14. 14.
    Rund, H., Variational problems involving combined tensor fields. Abb. Math. Sem. Univ. Hamburg, 29, 243–262 (1966).Google Scholar
  15. 15.
    Rund, H. & D. Lovelock, Variational principles in the general theory of relativity. Jber. Deutsch. Math. Verein., 74, 1–65 (1972).Google Scholar
  16. 16.
    Wainwright, J., Invariance properties of spinor Lagrangians. I., Tensor 19, 217–232 (1968).Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • Ian M. Anderson
    • 1
  1. 1.Department of MathematicsUtah State UniversityLogan

Personalised recommendations