European Biophysics Journal

, Volume 14, Issue 4, pp 257–261 | Cite as

Fluorescence correlation spectroscopy in the nanosecond time range: rotational diffusion of bovine carbonic anhydrase B

  • P. Kask
  • P. Piksarv
  • Ü. Mets
  • M. Pooga
  • E. Lippmaa
Article

Abstract

A fluorescence correlation experiment for measurement of rotational diffusion in the nanosecond time scale is described. Using this method, the rotational diffusion coefficient of bovine carbonic anhydrase B labelled with tetramethylrhodamine isothiocyanate was estimated to be Dr=(1.14±0.15)×107 s-1 at 22°C. The experiment is based on a cw argon ion laser, a microfluorimeter with local solution flow inside the sample cell, and two photon detectors. The fluorescence intensity autocorrelation function in the nanosecond time range is computed with the help of a time-to-amplitude converter and a multichannel pulse-amplitude analyser.

Key words

Carbonic anhydrase fluorescence correlation spectroscopy fluorescence intensity fluctuations photon correlation spectroscopy rotational diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragon SR, Pecora R (1975) Fluorescence correlation spectroscopy and Brownian rotational diffusion. Biopolymers 14: 119–138Google Scholar
  2. Aragon SR, Pecora R (1976) Fluorescence correlation spectroscopy as a probe of molecular dynamics. J Chem Phys 64: 1791–1803Google Scholar
  3. Ehrenberg M, Rigler R (1974) Rotational brownian motion and fluorescence intensity fluctuations. Chem Phys 4: 390–401Google Scholar
  4. Fahey PF, Koppel DE, Barak LS, Wolf DE, Elson EL, Webb WW (1977) Lateral diffusion in planar lipid bilayers. Science 195: 305–306Google Scholar
  5. Kask P, Piksarv P, Mets Ü (1985) Fluorescence correlation spectroscopy in the nanosecond time range: photon antibunching in dye fluorescence. Eur Biophys J 12: 163–166Google Scholar
  6. Koppel D (1974) Statistical accuracy in fluorescence correlation spectroscopy. Phys Rev A 10: 1938–1945Google Scholar
  7. Lippmaa ET, Olivson AI, Jarvet JI-H, Aguraiuja RK (1983) Study on bovine carbonic anhydrase B by [13C] NMR spectroscopy. Mol Biol (U.S.S.R.) 17: 484–491Google Scholar
  8. Magde D, Elson E, Webb WW (1972) Thermodynamic fluctuations in a reacting system — measurement by fluorescence correlation spectroscopy. Phys Rev Lett 29: 704–708Google Scholar
  9. Magde D, Elson EL, Webb WW (1974) Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers 13: 29–61Google Scholar
  10. Magde D, Webb WW, Elson EL (1978) Fluorescence correlation spectroscopy. III. Uniform translation and laminar flow. Biopolymers 17: 361–376Google Scholar
  11. Rigler R, Grasselli P, Ehrenberg M (1979) Fluorescence correlation spectroscopy and application to the study of brownian motion of biopolymers. Phys Scr 19: 486–490Google Scholar
  12. Sirk A, Kask P, Kändler T, Karu T, Puskar J, Lippmaa E (1979) Clip-correlator for fluorescence correlation experiments. Proc Acad Sci Estonian SSR Phys Math 28: 227–232Google Scholar
  13. Sorscher SM, Bartholomew JC, Klein MP (1980) The use of fluorescence correlation spectroscopy to probe chromatin in the cell nucleus. Biochim Biophys Acta 610: 28–46Google Scholar
  14. Yguerabide J, Epstein HF, Stryer L (1970) Segmental flexibility in an antibody molecule. J Mol Biol 51: 573–590Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • P. Kask
    • 1
  • P. Piksarv
    • 1
  • Ü. Mets
    • 1
  • M. Pooga
    • 1
  • E. Lippmaa
    • 1
  1. 1.Institute of Chemical Physics and BiophysicsEstonian Academy of SciencesTallinnUSSR

Personalised recommendations