Polymer Bulletin

, Volume 14, Issue 3–4, pp 379–386 | Cite as

Thermodynamics of polymer systems

5. Sorption and mixing properties of selected solutes and solubility parameters of atactic poly(styrene) by gas chromatography
  • H. Gräter
  • R. H. Schuster
  • H. -J. Cantow


Gas chromatography has been employed to determine partial molar free energies of sorption, ΔC1s, as well as partial molar free energies of mixing, ΔC1, of atactic poly(styrene) with linear and branched alkanes (C6-C9), alkenes (C8), cyclohexane and alkylbenzenes (Ph-H to PhC6H13) within the temperature range from 403 to 463 K. The influence of nature and constitution of the solute molecule on sorption and mixing properties in poly(styrene) are discussed in terms of the competing group contributions of the components. Knowledge of this influence may be transduced to understand polymer-polymer compatibility. The cohesive energy density concept has been used to calculate the infinite dilution solubility parameter for the polymer, with the aid of ΔG 1 . From the high temperature range the HILDEBRAND parameter δ2 was extrapolated to 298 K. The value obtained, 9.14, indicates that gas chromatography is an promising alternative to the conventional methods for determination of the solubility parameter for polymers.


Energy Density Alkane Styrene Cyclohexane Polymer System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    HILDEBRAND, J. H. and SCOTT, R. L., The Solubility of Non-electrolytes 3rd Ed., Reinhold Publishing Corp., New York (1950)Google Scholar
  2. 2.
    DIPAOLA-BARANYI, G. and GUILLET, J. E., Macromolecules 11, 228 (1978)Google Scholar
  3. 3.
    DIPAOLA-BARANYI, G., GUILLET, J. E., KLEIN, J. and JEBERIEN, J. E., J. Chromatography 166, 349 (1978)Google Scholar
  4. 4.
    SCHUSTER, R. H., GRÄTER, H. and CANTOW, H.-J., Macromolecules 17, 619 (1984)Google Scholar
  5. 5.
    LANDOLT-BÖRNSTEIN, Physikalische Tabellen, 6th. Ed., Vol. II/IGoogle Scholar
  6. 6.
    DREISBACH, D. R., Adv. Chem. Ser. 15, 22, 29 (1959)Google Scholar
  7. 7.
    TIMMERMANS, J., Physicochemical Constants of Pure Organic Compounds Elsevier, New York, Vol.1 (1950), Vol. 2 (1965)Google Scholar
  8. 8.
    MCGLASHAN, M. L. and POTTER, D. J. B., Proc. Royal Soc. London Ser. A 267, 478 (1962)Google Scholar
  9. 9.
    PATTERSON, D., TEWARI, Y. B. and SCHREIBER, H. B., J. Chem. Soc. Far. II 68, 885 (1972)Google Scholar
  10. 10.
    PATTERSON, D., Rubber Chem. Technol. 40, 1 (1967)Google Scholar
  11. 11.
    BRANDRUP, J. and IMMERGUT, E. H. Editors, Polymer Handbook, 2nd. Ed., Chap. IV, 358, John Wiley ɛ Sons, New York (1975)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. Gräter
    • 1
  • R. H. Schuster
    • 1
  • H. -J. Cantow
    • 1
  1. 1.Institut für Makromolekulare Chemie der Universität Freiburg, Hermann-Staudinger-HausFreiburgGermany

Personalised recommendations