Advertisement

Intensive Care Medicine

, Volume 13, Issue 2, pp 131–137 | Cite as

Performance of a miniaturised O2−Hb dissociation curve analyser on dog's blood

  • L. Sutton
  • C. E. W. Hahn
  • A. M. S. Black
Methods and Devices
  • 39 Downloads

Abstract

Oxygen-haemoglobin dissociation curves were determined on dogs' blood using a modified and miniaturised dissociation curve analyser. The Bohr factor describes the way in which pH varies the PO2 corresponding to a particular oxyhaemoglobin concentration. The factor was similar for three saturations and was little affected by whether the pH was changed by changing PCO2, or by adding fixed acid or alkali. The haemoglobin saturations in the mid-range tended to be lower than those predicted by the equation of Rossing and Cain (1966)

Key words

Haemoglobin Dissociation curves Bohr factor Oximetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Clerbaux TH, Frans A, Detry JM, Rousseau M (1976) Drift in the oxygen content measured with the LexO2con: long term assessment. J Lab Clin Invest 87:717Google Scholar
  2. 2.
    Dennis RC, Valeri CR (1980) Measuring percent oxygen saturation of hemoglobin, percent carboxyhemoglobin and methemoglobin, and concentrations of total hemoglobin and oxygen in blood of man, dog and baboon. Clin Chem 26:1304Google Scholar
  3. 3.
    Duvelleroy MA, Buckles RG, Rosenkaimer S, Tung C, Laver MB (1970) An oxyhemoglobin dissociation analyser. J Appl Physiol 28:227Google Scholar
  4. 4.
    Garby L, Robert M, Zaar B (1972) Proton- and carbamino-linked oxygen affinity of normal human blood. Acta Physiol Scand 84:482Google Scholar
  5. 5.
    Hahn CEW, Foex P, Raynor M (1976) A development of the oxyhemoglobin dissociation curve analyser. J Appl Physiol 41:259Google Scholar
  6. 6.
    Hlastala MP, Woodson RD (1983) Bohr effect data for blood gas calculations. J Appl Physiol 55:1002Google Scholar
  7. 7.
    Hlastala MP (1979) Physiological significance of the interaction of oxygen and carbon dioxide in blood. Crit Care Med 7:374Google Scholar
  8. 8.
    Kusumi CR, Butts WC, Ruff WL (1973) Superior analytical performance by electronic cell analysis of blood oxygen conte. Physiologie 35:299Google Scholar
  9. 9.
    Reeves RB, Park JS, Lapennas GN, Olszowka AJ (1982) Oxygen affinity and Bohr coefficients of dog blood. J Appl Physiol 53:87Google Scholar
  10. 10.
    Rossing RG, Cain SM (1966) A nomogram relating PO2, pH temperature and hemoglobin saturation in the dog. J Appl Physiol 21:195Google Scholar
  11. 11.
    Selman BJ, White YS, Tait AR (1975) An evaluation of the LexO2con oxygen content analyser. Anaesthesia 30:206Google Scholar
  12. 12.
    Teisseire B, Teisseire L, Lautier A, Herigault R, Laurent D (1975) A method of continuous recording on microsamples of the Hb−O2 association curve I. Technique and direct registration of standard results. Bull Physio-Pathol Respir 11:837Google Scholar
  13. 13.
    Valeri CR, Zaroulis CG, Marchionni L, Patti KJA (1972) A simple method for measuring oxyten content in blood. J Lab Clin Med 79:1035Google Scholar
  14. 14.
    Van Slyke DA, Neill JM (1924) The determination of gases in blood and other solutions by vacuum extraction and nemometric measurements. J Biol Chem 61:523Google Scholar
  15. 15.
    Wranne B, Woodson RD, Detter JC (1972) Bohr effect: interaction between H+, CO2 and 2,3-DPG in fresh and stored blood. J Appl Physiol 32:749Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • L. Sutton
    • 1
  • C. E. W. Hahn
    • 1
  • A. M. S. Black
    • 1
  1. 1.Nuffield Department of AnaestheticsRadcliffe InfirmanyOxfordUK

Personalised recommendations