, Volume 20, Supplement 1, pp 393–401 | Cite as

Cephalic phase, reflex insulin secretion neuroanatomical and physiological characterization

  • H. R. Berthoud
  • D. A. Bereiter
  • E. R. Trimble
  • E. G. Siegel
  • B. Jeanrenaud


Using chronically catheterized, freely moving male Wistar rats, we have shown that the sweet taste of a saccharin solution reliably triggers a rapid cephalic phase insulin response (CPIR), in the absence of any significant change of glycemia. To establish the neural mediation of this reflex response we used rats that were cured from streptozotocin diabetes by intrahepatic islet-transplantation as a denervated B-cell preparation. The complete lack of any saccharin-induced CPIR in these rats suggests that it is indeed mediated by the peripheral autonomic nervous system, and that the insulin-stimulating gastrointestinal hormones are not involved in this response. It was further found that this reflex insulin secretion is not easily extinguishable and thus might have an unconditioned component. To investigate the central neural pathways involved in this reflex response we used both electrophysiological methods in anesthetized and semi-micro CNS manipulations in freely moving rats. On the basis of our preliminary results, and several reports, using the decerebrate rat preparation for measuring behavioral or saliva secretory oral taste reactivity, it appears that CPIR might be organized at the brain stem/midbrain level, receiving strong modulatory influences from the diencephalon. But much further work has to be done to establish the central nervous circuitry. Finally, in two experiments, aiming at the question of how important and physiologically relevant the CPIR might be, we found that, on one hand, its lack can result in pathological oral glucose tolerance and on the other hand its exaggeration might contribute to the behavioral reaction to highly palatable sweet food and the resulting development of dietary obesity.

Key words

Preabsorptive insulin secretion cephalic phase insulin response taste reactivity B-cell denervation hepatic islet transplantation brain stem diencephalon hypothalamus nucleus of solitary tract glucose tolerance dietary obesity 


  1. 1.
    Andersen DK, Elahi D, Brown JC, Tobin JD, Andres R (1978) Oral glucose augmentation of insulin secretion. Interactions of gastric inhibitory polypeptide with ambient glucose and insulin levels. J Clin Invest 62: 152–161CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Assimacopoulos-Jeannet F, Jeanrenaud B (1976) The hormonal and metabolic basis of experimental obesity. Clin Endocrinol Metab 5: 337–365CrossRefPubMedGoogle Scholar
  3. 3.
    Bereiter DA, Berthoud HR, Jeanrenaud B (1980) Hypothalamic input to brain stem neurons responsive to oropharyngeal stimulation. Exp Brain Res 39: 33–39CrossRefPubMedGoogle Scholar
  4. 4.
    Berthoud HR, Bereiter DA, Jeanrenaud B (1980) VMH procainization abolishes cephalic phase insulin response. Brain Res Bull 5 [Suppl 4]: 127–131CrossRefGoogle Scholar
  5. 5.
    Berthoud HR, Mogenson GJ (1977) Ingestive behavior after intracerebral and intracerebroventricular infusions of glucose and 2-deoxy-D-glucose. Am J Physiol 233: R127-R133PubMedGoogle Scholar
  6. 6.
    Berthoud HR, Trimble ER, Siegel EG, Bereiter DA, Jeanrenaud B (1980) Cephalic phase insulin secretion in normal and pancreatic islet-transplanted rats. Am J Physiol 238: E336-E340PubMedGoogle Scholar
  7. 7.
    Bykov KM (1960) Textbook of physiology. Foreign Languages Publishing House, MoscowGoogle Scholar
  8. 8.
    Davies R, Nakajima S, White N (1974) Enhancement of feeding produced by stimulation of the ventromedial hypothalamus. J Comp Physiol Psychol 86: 414–419CrossRefPubMedGoogle Scholar
  9. 9.
    Deutsch R (1974) Conditioned hypoglycemia: A mechanism for saccharin-induced sensitivity to insulin in the rat. J Comp Physiol Psychol 86: 350–358CrossRefPubMedGoogle Scholar
  10. 10.
    Epstein AN (1960) Reciprocal changes in feeding behavior produced by intrahypothalamic chemical injections. Am J Physiol 199: 969–974PubMedGoogle Scholar
  11. 11.
    Fischer U, Hommel H, Novak W, Hahn von Dorsche H, Sill U, Lippert H (1976) Der Einfluß der Vagotomie auf die Glucosetoleranz sowie die Reaktionen von Plasmainsulin und exokriner Pankreasfunktion nach Glukosebelastung oder Nahrungsaufnahme bei Hunden. Acta Biol Med Ger 35: 1279–1291PubMedGoogle Scholar
  12. 12.
    Fischer U, Novak W, Freyse EJ, Hommel H, Sill U, Lippert H (in press) The influence of selective pancreatic denervation on plasma insulin, glucose tolerance, and the exocrine pancreatic function in dogs. DiabetologiaGoogle Scholar
  13. 13.
    Frank GB, Sanders HD (1963) A proposed common mechanism of action for general and local anesthetics in the central nervous system. Br J Pharmacol 21: 1–9Google Scholar
  14. 14.
    Grill HJ, Norgren R (1978) The taste reactivity test. II. Mimetic responses to gustatory stimuli in chronic thalamic and chronic decerebrated rats. Brain Res 143: 281–297CrossRefPubMedGoogle Scholar
  15. 15.
    Grill HJ (in press) Levels of function in regulated ingestive behaviors. Brain Res BullGoogle Scholar
  16. 16.
    Han P, Yu Y, Chow S (1970) Enlarged pancreatic islets of tube-fed hypophysectomized rats bearing hypothalamic lesions. Am J Physiol 218: 769–771PubMedGoogle Scholar
  17. 17.
    Han PW, Frohman LA (1970) Hyperinsulinemia in tube-fed hypophysectomized rats bearing hypothalamic lesions. Am J Physiol 219: 1632–1636PubMedGoogle Scholar
  18. 18.
    Hommel H, Fischer U, Retzlaff K, Knöfler H (1972) The mechanism of insulin secretion after oral glucose administration. II. Reflex insulin secretion in conscious dogs bearing fistulas of the digestive tract by sham-feeding of glucose or tap water. Diabetologia 8: 111–116CrossRefPubMedGoogle Scholar
  19. 19.
    Hommel H, Fischer U (1977) The mechanism of insulin secretion after oral glucose administration. V. Portal venous IRI concentration in dogs after ingestion of glucose. Diabetologia 13: 269–272CrossRefPubMedGoogle Scholar
  20. 20.
    Kanarek RB, Marks-Kaufman R (1979) Developmental aspects of sucrose-induced obesity in rats. Physiol Behav 23: 881–885CrossRefPubMedGoogle Scholar
  21. 21.
    Kawamura Y, Yamamoto T (1978) Studies on neural mechanisms of the gustatory-salivary reflex in rabbits. J Physiol (Lond) 285: 35–47CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Kornblith GL, Hall WG (1979) Brain transections selectively alter ingestion and behavioral activation in neonatal rats. J Comp Physiol Psychol 93: 1109–1117CrossRefPubMedGoogle Scholar
  23. 23.
    Krotkiewski M, Sjöström L, Sullivan L (1978) Instantaneousbiphasic insulin elevation after exposure to visual and olfactory stimuli in obese and normal individuals (Abstract 124). 11th Annual Meeting of the European Society for Clinical Investigation, RotterdamGoogle Scholar
  24. 24.
    Louis-Sylvestre J (1976) Preabsorptive insulin release and hypoglycemia in rats. Am J Physiol 230: 56–60PubMedGoogle Scholar
  25. 25.
    Louis-Sylvestre J (1978) Relationship between two stages of prandial insulin release in rats. Am J Physiol 235: E103-E111PubMedGoogle Scholar
  26. 26.
    Le Magnen J (1978) Metabolically driven and learned feeding responses in man. In: Bray G (ed) Advances in obesity research, II. Newman, London, p 45–53Google Scholar
  27. 27.
    Mondon CE, Olefsky JM, Dolkas CB, Reaven GM (1975) Removal of insulin by perfused rat liver: Effect of concentration. Metabolism 24: 153–160CrossRefPubMedGoogle Scholar
  28. 28.
    Mook, DG (1974) Saccharin preference in the rat: some unpalatable findings. Psychol Rev 81: 475–490CrossRefPubMedGoogle Scholar
  29. 29.
    Nicolaidis S (1969) Early systemic responses to orogastric stimulation in the regulation of food and water balance: functional and electrophysiological data. Ann NY Acad Sci 157: 1176–1203CrossRefPubMedGoogle Scholar
  30. 30.
    Nilsson G, Uvnäs-Wallensten K (1977) Effect of teasing and sham feeding on plasma glucagon concentration in dogs. Acta Physiol Scand 100: 298–302CrossRefPubMedGoogle Scholar
  31. 31.
    Norgren R (1978) Projections from the nucleus of the solitary tract in the rat. Neuroscience 3: 207–218CrossRefPubMedGoogle Scholar
  32. 32.
    Parra-Covarrubias A, Rivera-Rodriguez I, Almarez-Ugalde A (1971) Cephalic phase of insulin secretion in obese adolescents. Diabetes 20: 800–802CrossRefPubMedGoogle Scholar
  33. 33.
    Pavlov IP (1902) The work of the digestive glands. London, Charles GriffinGoogle Scholar
  34. 34.
    Pederson RA, Schubert HE, Brown JC (1975) Gastric inhibitory polypeptide. Its physiologic release and insulinotropic action in the dog. Diabetes 24: 1050–1056CrossRefPubMedGoogle Scholar
  35. 35.
    Powley T (1977) The ventromedial hypothalamic syndrome, satiety and a cephalic phase hypothesis. Psychol Rev 84: 89–126CrossRefPubMedGoogle Scholar
  36. 36.
    Rodin J (1978) Has the distinction between internal versus external control of feeding outlived its usefulness? In: Bray G (ed) Recent advances in obesity research, II. Newman Publishing, London, p 75–85Google Scholar
  37. 37.
    Rohner-Jeanrenaud F, Jeanrenaud B (1980) Consequences of ventromedial hypothalamic lesions upon insulin and glucagon secretion by subsequently isolated perfused pancreases in the rat. J Clin Invest 65: 902–910CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Saper CB (1979) Anatomical substrates for the hypothalamic control of the autonomic nervous system. In: Brooks C McC, Koizumi K, Sato A (eds) Integrative functions of the autonomic nervous system. University of Tokyo Press, Tokyo, p 333–341Google Scholar
  39. 39.
    Sclafani A (1978) Dietary obesity. In: Bray G (ed) Recent advances in obesity research, II. Newman Publishing, London, p 123–132Google Scholar
  40. 40.
    Sheffield FD, Roby TB (1950) Reward value of a non-nutritive sweet taste. J Comp Physiol Psychol 43: 471–481CrossRefPubMedGoogle Scholar
  41. 41.
    Sims EAH, Danforth E Jr, Horton ES, Bray GA, Glennon JA, Salans LB (1973) Endocrine and metabolic effects of experimental obesity in man. Recent Prog Horm Res 29: 457–496PubMedGoogle Scholar
  42. 42.
    Steffens AB (1969b) Rapid absorption of glucose in the intestinal tract of the rat after ingestion of a meal. Physiol Behav 4: 829–832CrossRefGoogle Scholar
  43. 43.
    Steffens AB (1976) Influence of the oral cavity on insulin release in the rat. Am J Physiol 230: 1411–1415PubMedGoogle Scholar
  44. 44.
    Steiner JE (1973) The human gustofacial response. In: Bosma JF (ed) Fourth Symposium on Oral Sensation and Perception. US Dept of HEW, Bethesda Md, p 254–278Google Scholar
  45. 45.
    Stephan F, Reville P, Thierry R, Schlienger JL (1972) Correlations between plasma insulin and body weight in obesity, anorexia nervosa and diabetes mellitus. Diabetologia 8: 196–201CrossRefPubMedGoogle Scholar
  46. 46.
    Strubbe JH, Steffens AB (1975) Rapid insulin release after ingestion of a meal in the unanesthetized rat. Am J Physiol 229: 1019–1022PubMedGoogle Scholar
  47. 47.
    Taylor IL, Feldman M, Richardson CT, Walsh JH (1978) Gastric and cephalic stimulation of human pancreatic polypeptide release. Gastroenterology 75: 432–437PubMedGoogle Scholar
  48. 48.
    Teitelbaum P (1955) Sensory control of hypothalamic hyperphagia. J Comp Physiol Psychol 48: 156–163CrossRefPubMedGoogle Scholar
  49. 49.
    Trimble ER, Siegel EG, Berthoud HR, Renold AE (1980) Intraportal islet transplantation: Functional assessment in conscious unrestrained rats. Endocrinology 106: 791–797CrossRefPubMedGoogle Scholar
  50. 50.
    Wahren J, Felig P, Ahlborg G, Jorfeldt J (1971) Glucose metabolism during leg exercise in man. J Clin Invest 50: 2715–2725CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • H. R. Berthoud
    • 1
    • 2
  • D. A. Bereiter
    • 1
    • 2
  • E. R. Trimble
    • 1
    • 2
  • E. G. Siegel
    • 1
    • 2
  • B. Jeanrenaud
    • 1
    • 2
  1. 1.Laboratoires de Recherches MétaboliquesInstitut de Biochimie CliniqueSwitzerland
  2. 2.Département de MédecineUniversity of GenevaGenevaSwitzerland

Personalised recommendations