Archive for Rational Mechanics and Analysis

, Volume 18, Issue 1, pp 1–13 | Cite as

Toward the validity of Prandtl's approximation in a boundary layer

  • Paul C. Fife


Neural Network Boundary Layer Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Kotschin, N. J., J. A. Kibel, & N. W. Rose, Theoretische Hydromechanik, Band II. Berlin: Akademie-Verlag 1955.zbMATHGoogle Scholar
  2. [2]
    Miranda, C., Equazioni alle Derivate Parziali di Tipo Ellittico. Berlin-Göttingen-Heidelberg: Springer 1955.zbMATHGoogle Scholar
  3. [3]
    Nickel, K., Die Prandtlschen Grenzschichtdifferentialgleichungen als Grenzfall der Navier-Stokesschen und der Eulerschen Differentialgleichungen. Arch. Rational Mech. Anal. 13, 1–14 (1963).ADSMathSciNetCrossRefGoogle Scholar
  4. [4]
    Oleinik, O. A., The Prandtl system of equations in boundary layer theory. Dokl. Akad. Nauk S.S.S.R. 150; Soviet Math. 4 (3), 583–586 (1963); Ž. Vyčisl. Mat. i Mat. Fiz. 3, 489–507 (1963).Google Scholar
  5. [5]
    Serrin, J. B., Mathematical Aspects of Boundary Layer Theory. Lecture notes, University of Minnesota 1962.Google Scholar

Copyright information

© Springer-Verlag 1965

Authors and Affiliations

  • Paul C. Fife
    • 1
  1. 1.School of Mathematics University of MinnesotaMinneapolis

Personalised recommendations