Archive for Rational Mechanics and Analysis

, Volume 11, Issue 1, pp 415–448 | Cite as

Effects of couple-stresses in linear elasticity

  • R. D. Mindlin
  • H. F. Tiersten


Neural Network Complex System Nonlinear Dynamics Electromagnetism Linear Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Voigt, W.: Theoretische Studien über die Elasticitätsverhältnisse der Krystalle. Abh. Ges. Wiss. Göttingen 34 (1887); Über Medien ohne innere Kräfte und eine durch sie gelieferte mechanische Deutung der Maxwell-Hertzschen Gleichungen. Gött. Abh. 72–79 (1894).Google Scholar
  2. [2]
    Cosserat, E., et Cosserat, F.: Théorie des Corps Déformables. Paris: A. Hermann et Fils 1909.Google Scholar
  3. [3]
    Truesdell, C., & R. A. Toupin: The Classical Field Theories. Encyclopedia of Physics, Vol. III/1, Secs. 200, 203, 205. Berlin-Göttingen-Heidelberg: Springer 1960.Google Scholar
  4. [4]
    Toupin, R. A.: Elastic materials with couple-stresses. Arch. Rational Mech. Anal., 11, 385–414 (1962).Google Scholar
  5. [5]
    Aero, E. L., & E. V. Kuvshinskii: Fundamental equations of the theory of elastic media with rotationally interacting particles. Fizika Tverdogo Tela 2, 1399–1409 (1960); Trans.: Soviet Physics Solid State 2, 1272–1281 (1961).Google Scholar
  6. [6]
    Grioli, G.: Elasticità asimmetrica. Ann. di Mat. pura ed appl., Ser. IV, 50, 389–417 (1960).Google Scholar
  7. [7]
    Weatherburn, C. E.: Advanced Vector Analysis. London: G. Bell and Sons 1928.Google Scholar
  8. [8]
    Wilson, E. B.: Vector Analysis. New Haven: Yale Univ. Press 1948.Google Scholar
  9. [9]
    Love, A. E. H.: A Treatise on the Mathematical Theory of Elasticity, Fourth Ed. Cambridge: Cambridge Univ. Press 1927.Google Scholar
  10. [10]
    Toupin, R. A.: The elastic dielectric. J. Rational Mech. and Anal. 5, 849–914 (1956).Google Scholar
  11. [11]
    Sternberg, E.: On the integration of the equations of motion in the classical theory of elasticity. Arch. Rational Mech. Anal. 6, 34–50 (1960).Google Scholar
  12. [12]
    Atanasoff, J. V., & P. J. Hart: Dynamical determination of the elastic constants and their temperature coefficients for quartz. Phys. Rev. 59, 85–96 (1941).Google Scholar
  13. [13]
    Mindlin, R. D.: Thickness-shear and flexural vibrations of crystal plates. J. Appl. Phys. 22, 316–323 (1951).Google Scholar
  14. [14]
    Onoe, M.: Tables of Modified Quotients of Bessel Functions of the First Kind for Real and Imaginary Arguments. New York: Columbia Univ. Press 1958.Google Scholar
  15. [15]
    Papkovitch, P. F.: The representation of the general integral of the fundamental equations of elasticity theory in terms of harmonic functions. Izv. Akad. Nauk SSSR, Phys.-Math. Ser. 10, 1425 (1932).Google Scholar
  16. [16]
    Mindlin, R. D.: Note on the Galerkin and Papkovitch stress functions. Bull. Amer. Math. Soc. 42, 373–376 (1936).Google Scholar
  17. [17]
    Mindlin, R. D.: Force at a point in the interior of a semi-infinite solid. Proc. First Midwestern Conference on Solid Mechanics, Urbana, Illinois, 56–59 (1953).Google Scholar
  18. [18]
    Galerkin, B.: Contribution à la solution générale du problème de la théorie de l'élasticité dans le cas de trois dimensions. Comptes Rendus Acad. Sci., Paris 190, 1047 (1930).Google Scholar
  19. [19]
    Timoshenko, S. P., & J. N. Goodier: Theory of Elasticity. New York: McGraw-Hill 1951.Google Scholar

Copyright information

© Springer-Verlag 1962

Authors and Affiliations

  • R. D. Mindlin
    • 1
    • 2
  • H. F. Tiersten
    • 1
    • 2
  1. 1.Department of Civil EngineeringColumbia UniversityNew York
  2. 2.Bell Telephone Laboratories Whippany

Personalised recommendations