Archive for Rational Mechanics and Analysis

, Volume 78, Issue 1, pp 73–98

Long-time behavior of solutions to nonlinear evolution equations

  • Sergiu Klainerman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    Klainerman, S., Global existence for nonlinear wave equations, Comm. Pure Appl. Math. 33, 43–101 (1980).Google Scholar
  2. 2.
    John, F., Blow-Up of Solutions of nonlinear wave equations in three space dimensions, Manuscripta Math. 28, 235–268 (1979).Google Scholar
  3. 3.
    Fujita, H., On the blowing up of solutions of the Cauchy problem for u t = Δu + u 1 +α, J. Fac. Sci. Univ. Tokyo, Sect. 1 13 (1966), 109–124.Google Scholar
  4. 4.
    Kato, T., Unpublished work on the nonlinear Schrödinger equation.Google Scholar
  5. 5.
    Guang-Chang Dong & Li Shujie, On initial value problems for a nonlinear Schrö- dinger equation, preprint.Google Scholar
  6. 6.
    John, F., Finite amplitude waves in a homogeneous isotropic elastic solid, Comm. Pure. Appl. Math. 30, 421–446 (1977).Google Scholar
  7. 7.
    Strauss, W., Dispersion of low-energy waves for two conservative equations, Arch. Rational Mech. Anal. 55 (1974), 86–92.Google Scholar
  8. 8.
    Won Wahl, W., LP-decay rates for homogeneous wave equations, Math. Z. 120, 1971, 93–106.Google Scholar
  9. 9.
    Hörmander, L., Implicit Function Theorems, Lectures at Stanford University, Summer 1977.Google Scholar
  10. 10.
    Strauss, W., Everywhere defined wave operators, Proceedings of the Symp. in “Nonlinear Evolution Equations,” Madison, 1977.Google Scholar
  11. 11.
    Strauss, W., Nonlinear Scattering Theory at Low Energy, preprint.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1982

Authors and Affiliations

  • Sergiu Klainerman
    • 1
  1. 1.Courant Institute of Mathematical SciencesNew York UniversityUSA

Personalised recommendations