Archive for Rational Mechanics and Analysis

, Volume 17, Issue 2, pp 85–112 | Cite as

Theories of elasticity with couple-stress

  • R. A. Toupin


Neural Network Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1850 1. Cauchy, A. L., Mémoire sur les systèmes isotropes de points materiels. Mém. Acad. Sci. 22, p. 615 = Oeuvres (1) 2, 351.Google Scholar
  2. 1909 1. Cosserat, E. & Cosserat, F., Théorie des Corps Déformables. Paris: Hermann & Fils.Google Scholar
  3. 1914 1. Hellinger, E., Die allgemeinen Ansätze der Mechanik der Kontinua. Enzy. d. Math. Wiss. IV, 4, p. 30.Google Scholar
  4. 1914 2. Heun, K., Ansätze und allgemeine Methoden der Systemmechanik. Enzy. d. Math. Wiss. IV, 2, p. 11.Google Scholar
  5. 1918 1. Klein, F., Nachr. kgl. Ges. Wiss. Göttingen, 235.Google Scholar
  6. 1918 2. Noether, E., Nachr. kgl. Ges. Wiss. Göttingen, 171.Google Scholar
  7. 1929 1. Jaramillo, T. J., A Generalization of the Energy Function of Elasticity Theory. Dissertation, U. of Chicago.Google Scholar
  8. 1952 1. Truesdell, C., The Mechanical Foundations of Elasticity and Fluid Dynamics. J. Rational Mech. and Anal. 1, 125.Google Scholar
  9. 1956 1. Tiffen, R., & A. C. Stevenson, Elastic Isotropy with Body Force and Couple. Quart. J. Mech. and Applied Math. 9, 306.Google Scholar
  10. 1958 1. Ericksen, J. L., & C. Truesdell, Exact Theory of Stress and Strain in Rods and Shells. Arch. Rational Mech. and Anal. 1, 295.Google Scholar
  11. 1958 2. Günther, W., Zur Statik und Kinematik des Cosseratschen Kontinuums. Abh. Braunschweigische Wiss. Ges. 10, 195.Google Scholar
  12. 1960 1. Truesdell, C., & R. Toupin, The Classical Field Theories. Encyclopedia of Physics, Vol. III/1. Berlin-Göttingen-Heidelberg: Springer.Google Scholar
  13. 1960 2. Grioli, G., Elasticità asinimetrica. Ann. di Mat. pura ed appl., Ser. IV, 50, 389.Google Scholar
  14. 1961 1. Germer, L. H., A. U. MacRae, & C. D. Hartman, J. Appl. Phys. 32, 2432.Google Scholar
  15. 1962 1. Toupin, R., Elastic Materials with Couple-stresses. Arch. Rational Mech. Anal. 11, 385.Google Scholar
  16. 1962 2. Mindlin, R. D., & H. F. Tiersten, Effects of Couple-stresses in Linear Elasticity. Arch. Rational Mech. Anal. 11, 415.Google Scholar
  17. 1962 3. Schaefer, H., Versuch einer Elastizitätstheorie des zweidimensionalen ebenen Cosserat-Kontinuums, Miszellaneen der Angewandten Mechanik. Festschrift W. Tollmien. Berlin: Akademie-Verlag.Google Scholar
  18. 1963 1. Toupin, R., & D. Gazis, Surface Effects and Initial Stress in Continuum and Lattice Models of Elastic Crystals. To appear in the Proceedings of the First International Congress on Lattice Dynamics held at Copenhagen, 1963.Google Scholar
  19. 1963 2. Mindlin, R. D., Microstructure in Linear Elasticity. Technical Report No. 50, ONR Project NR 064-388, Columbia Univ. = Arch. Rational Mech. Anal. 16, 51–78 (1964).Google Scholar
  20. 1963 3. Toupin, R. A., Equivalence of the principles of conservation and invariance in non-simple elastic materials. Lecture presented at the first meeting of the Society for Natural Philosophy held at The Johns Hopkins University, Baltimore, March 1963.Google Scholar

Copyright information

© Springer-Verlag 1964

Authors and Affiliations

  • R. A. Toupin
    • 1
  1. 1.IBM Watson Research CenterYorktown Heights

Personalised recommendations