Applied Microbiology and Biotechnology

, Volume 20, Issue 2, pp 100–104 | Cite as

Ethanol production in a hollow fiber bioreactor using Saccharomyces cerevisiae

  • Mohamed A. Mehaia
  • Munir Cheryan


A new approach for continuous production of ethanol was developed using a Hollow fiber fermentor (HFF). Saccharomyces cerevisiae cells were packed into the shell-side of a hollow fiber module. Using 100 g/l glucose in the feed gave an optimum ethanol productivity, based on total HFF volume, of 40 g ethanol/l/h at a dilution rate of 3.0 h-1. Under these conditions, glucose utilization was 30%. However, at 85% glucose utilization the productivity was 10 g ethanol/l/h. This compares to batch fermentor productivity of 2.1 g ethanol/l/h at 100% glucose utilization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cheryan M, Mehaia MA (1983) A high-performance membrane bioreactor for continuous fermentation of lactose to ethanol. Biotechnol Lett 5:519Google Scholar
  2. Cysewski GR, Wilke CR (1977) Rapid ethanol fermentation using vacuum and cell recycle. Biotechnol Bioeng 19:1125Google Scholar
  3. Cysewski GR, Wilke CR (1978) Process design and economic studies of alternative methods for the production of ethanol. Biotechnol Bioeng 20:1421Google Scholar
  4. Deeslie WD, Cheryan M (1981) A CSTR-hollow fiber system for continuous hydrolysis of proteins. Performance and kinetics. Biotechnol Bioeng 23:2257Google Scholar
  5. Ghose TK, Bandyopadhyay KK (1980) Rapid ethanol fermentation of cellulose in immobilized cell reactor. Biotechnol Bioeng 21:1387Google Scholar
  6. Ghose T, Tyagi RD (1979) Rapid ethanol fermentation of cellulose hydrolysate. Batch versus continuous system. Biotechnol Bioeng 21:1387Google Scholar
  7. Inloes DS, Taylor DP, Cohen SN, Michaels AS, Robertson CR (1983) Ethanol production by Saccharomyces cerevisiae immobilized in hollow-fiber membrane bioreactors. Appl Environ Microbiol 46:264Google Scholar
  8. Klein J, Kressdorf B (1983) Improvement of productivity and efficiency in ethanol production with Ca-alginate immobilized Z. mobilis. Biotechnol Lett 5:497Google Scholar
  9. Kohlwey DK, Cheryan M (1981) Performance of a β-d-galactosidase hollow fiber reactor. Enz Microbiol Technol 3:64Google Scholar
  10. Margaritis A, Bajpai PK, Wallace JB (1981) High ethanol productivities using small Ca-alginate beads of immobilized cells of Zymomonas mobilis. Biotechnol Lett 3:616–618Google Scholar
  11. McGhee JE, Julian GST, Detroy RW, Bothast RJ (1982) Ethanol production by immobilized Saccharomyces cerevisiae, Saccharomyces uvarum and Zymomonas mobilis. Biotechnol Bioeng 24:1155–1163Google Scholar
  12. Mehaia MA, Cheryan M (1984) Hollow fiber fermentor for continuous production of ethanol. Application to the conversion of lactose by Kluyveromcyces fragilis. Enz Microbiol Technol 6:117–120Google Scholar
  13. Mehaia MA, Cheryan M (1984) Ethanol production in a membrane recycle bioreactor. Conversion of glucose using Saccharomyces cerevisiae. Proc Biochem (in press)Google Scholar
  14. Mehaia MA, Cheryan M, Argoudelis CJ (1984) Conversion of whey permeate to ethanol. Improvement of fermentor productivity using synthetic membrane. Cult Dairy Prod J (in press)Google Scholar
  15. Ramalingam A, Finn RK (1977) The vacuferm process: a new approach to fermentation alcohol. Biotechnol Bioeng 19:585Google Scholar
  16. Rogers PL, Lee KJ, Tribe DE (1980) High productivity ethanol fermentations with Zymomonas mobilis. Proc Biochem 15:7Google Scholar
  17. Rogers PL, Lee KJ, Skotnicki ML, Tribe DE (1982) Ethanol production by Zymomonas mobilis. Adv Biochem Eng 23:37Google Scholar
  18. Roy TBV, Blanch HW, Wilke CR (1982) Lactic acid production by Lactobacillus delbreukii in a hollow fiber fermentor. Biotechnol Lett 4:483Google Scholar
  19. Summer JB, Somero GF (1949) Dinitrosalicylic method for glucose. Lab Exp Biol Chem, Academic Press, New YorkGoogle Scholar
  20. Wada M, Kato J, Chibata I (1980) Continuous production of ethanol in high concentration using immobilized growing yeast cells. Eur J Appl Microbiol Biotechnol 11:67Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Mohamed A. Mehaia
    • 1
  • Munir Cheryan
    • 1
  1. 1.Department of Food Science, 382D Agricultural Engineering Sciences BuildingUniversity of IllinoisUrbanaUSA

Personalised recommendations