Archive for Rational Mechanics and Analysis

, Volume 46, Issue 3, pp 177–199 | Cite as

General lagrange and hermite interpolation in Rn with applications to finite element methods

  • P. G. Ciarlet
  • P. A. Raviart
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aubin, J.P., Behavior of the approximate solution of boundary value problems for linear elliptic operators by Galerkin's and finite difference methods. Ann. Scuola Norm. Sup. Pisa 21, 559–639 (1967).Google Scholar
  2. 2.
    Aubin, J.P., Approximation des espaces de distributions et des opérateurs différentiels. Bull. Soc. Math. France (1967), Mémoire No 12.Google Scholar
  3. 3.
    Babuška, Ivo, The finite element method for elliptic differential equations (Symp. on the Numerical Solution of Partial Differential Equations, Univ. of Maryland, 1970). Numerical Solution of Partial Differential Equations-II (B. Hubbard, ed.), p. 69–106. New York: Academic Press 1971.Google Scholar
  4. 4.
    Babuška, Ivo, Error bounds for finite element method. Numer. Math. 16, 322–333 (1971).Google Scholar
  5. 5.
    Bell, K., A refined triangular plate bending finite element. Int. J. Numer. Math. Engineering 1, 101–121 (1969).Google Scholar
  6. 6.
    Birkhoff, G., M. Schultz, & R.S. Varga, Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math. 11, 232–256 (1968).Google Scholar
  7. 7.
    Bramble, James H., Variational Methods for the Numerical Solution of Elliptic Problems (Lecture notes). Chalmers Institute of Technology and the University of Göteborg, Sweden, 1970.Google Scholar
  8. 8.
    Bramble, J.H., & S.R. Hilbert, Estimation of linear functionals on Sobolev spaces with applications to Fourier transforms and spline interpolation. SIAM J. Numer. Anal. 7, 112–124 (1970).Google Scholar
  9. 9.
    Bramble, J.H., & S.R. Hilbert, Bounds for a class of linear functionals with applications to Hermite interpolation. Numer. Math. 16, 362–369 (1971).Google Scholar
  10. 10.
    Bramble, James H., & Miloš Zlámal, Triangular elements in the finite element method. Math. Comp. 24, 809–820 (1970).Google Scholar
  11. 11.
    Cartan, Henri, Calcul Differentiel. Paris: Hermann 1967.Google Scholar
  12. 12.
    Ciarlet, P.G., Some results in the theory of nonnegative matrices. Linear Algebra and Appl. 1, 139–152 (1968).Google Scholar
  13. 13.
    Ciarlet, P.G., & C. Wagschal, Multipoint Taylor formulas and applications to the finite element method. Numer. Math. 17, 84–100 (1971).Google Scholar
  14. 14.
    Coatmélec, Christian, Approximation et interpolation des fonctions différentiables de plusieurs variables. Ann. Sci. Ecole Norm. Sup. (3) 83, 271–341 (1966).Google Scholar
  15. 15.
    Dieudonnè, J., Foundations of Modern Analysis. New York: Academic Press Inc. 1960.Google Scholar
  16. 16.
    Fix, G., & G. Strang, Fourier analysis of the finite element method in Ritz-Galerkin theory. Studies in Appl. Math. 48, 265–273 (1969).Google Scholar
  17. 17.
    Frederickson, Paul O., Triangular spline interpolation. Math. Report No. 6, Lakehead Univ. 1970.Google Scholar
  18. 18.
    Guenther, R.B., & E. L. Roetman, Some observations on interpolation in higher dimensions. Math. Comp. 24, 517–522 (1970).Google Scholar
  19. 19.
    Guglielmo, F. di, Méthode des éléments finis: Une famille d'approximation des espaces de Sobolev par les translatées de p fonctions. Calcolo 7, 185–234 (1970).Google Scholar
  20. 20.
    Hall, C.A., Bicubic interpolation over triangles. J. Math. Mech. 19, 1–11 (1969).Google Scholar
  21. 21.
    Nečas, Jindřich, Les Méthodes Directes en Théorie des Equations Elliptiques. Paris: Masson 1967.Google Scholar
  22. 22.
    Nicolaides, R.A., On Lagrange interpolation in n variables. Institute of Computer Sciences (London), Tech. Note ICSI 274, 1970.Google Scholar
  23. 23.
    Nicolaides, R.A., On a class of finite elements generated by Lagrange interpolation II. Institute of Computer Science (London), Techn. Note ICSI 329, 1971.Google Scholar
  24. 24.
    Nicolaides, R.A., On a class of finite elements generated by Lagrange interpolation. To appear.Google Scholar
  25. 25.
    Nitsche, J., Interpolation in Sobolevschen Funktionenräumen. Numer. Math. 13, 334–343 (1969).Google Scholar
  26. 26.
    Nitsche, J., Lineare Spline-Funktionen und die Methode von Ritz für elliptische Randwertprobleme. Arch. Rational Mech. Anal. 36, 348–355 (1970).Google Scholar
  27. 27.
    Salzer, Herbert E., Formulas for bivariate hyperosculatory interpolation. Math. Comp. 25, 119–133 (1971).Google Scholar
  28. 28.
    Schultz, M. H., L2-multivariate approximation theory. SIAM J. Numer. Anal. 6, 184–209 (1969).Google Scholar
  29. 29.
    Strang, Gilbert, The finite element method and approximation theory (Symp. on the Numerical Solution of Partial Differential Equations, Univ. of Maryland, 1970). Numerical Solution of Partial Differential Equations-II (B. Hubbard, ed.), p. 547–583. New York: Academic Press 1971.Google Scholar
  30. 30.
    Strang, Gilbert, & George Fix, Chapter III of: An Analysis of the Finite Element Method. To appear.Google Scholar
  31. 31.
    Taylor, Angus E., Introduction to Functional Analysis. New-York: John Wiley 1958.Google Scholar
  32. 32.
    Thacher, Jr., Henry C., Derivation of interpolation formulas in several independent variables. Ann. New York Acad. Sci. 86, 758–775 (1960).Google Scholar
  33. 33.
    Thacher, Jr., Henry C., & W.E. Milne, Interpolation in several variables. J. Soc. Indust. Appl. Math. 8, 33–42 (1960).Google Scholar
  34. 34.
    Ženíšek, Alexander, Interpolation polynomials on the triangle. Numer. Math. 15, 283–296 (1970).Google Scholar
  35. 35.
    Zlámal, Miloš, On the finite element method. Numer. Math. 12, 394–409 (1968).Google Scholar
  36. 36.
    Zlámal, Miloš, A finite element procedure of the second order of accuracy. Numer. Math. 14, 394–402 (1970).Google Scholar

Copyright information

© Springer-Verlag 1972

Authors and Affiliations

  • P. G. Ciarlet
    • 1
    • 2
  • P. A. Raviart
    • 1
    • 2
  1. 1.Service de MathématiquesLaboratoire Central des Ponts et ChausséesParis
  2. 2.Département de MathématiquesUniversité de Paris VIParis

Personalised recommendations