Advertisement

Archives of Microbiology

, Volume 160, Issue 5, pp 358–362 | Cite as

Is intracytoplasmic membrane structure a generic criterion? It does not coincide with phylogenetic interrelationships among phototrophic purple nonsulfur bacteria

  • Hiroko Kawasaki
  • Yasuo Hoshino
  • Aiko Hirata
  • Kazuhide Yamasato
Original Papers

Abstract

The 16S rRNA or rRNA gene sequences of the type strains of 5 species of Rhodobacter, Rhodopseudomonas blastica and Paracoccus denitrificans were determined. The sequence analysis revealed that Rhodobacter species, whose intracytoplasmic membrane systems were characteristically vesicular, composed a sole cluster. Rhodopseudomonas blastica, whose intracytoplasmic membrane system was lamellar, was included in the cluster of Rhodobacter. The phylogenetic co-clustering of these bacteria conformed to their possessing of the identical types of carotenoids. Paracoccus denitrificans, which is nonphototrophic, is a right member of the Rhodobacter cluster. Rhodobacter species, Rhodopseudomonas blastica and Paracoccus denitrificans are apart from the other phototrophic bacteria and have the common deletions of 21 bases at the positions 1258 to 1278 (Escherichia coli numbering system). It was demonstrated that the morphological character “intracyto-plasmic membrane structure”, that has been regarded as a generic criterion does not reflect the phylogeny in the phototrophic bacteria. The transfer of Rhodopseudomonas blastica to the genus Rhodobacter is proposed.

Key words

Phototrophic bacteria Rhodobacter Rhodopseudomonas blastica Paracoccus denitrificans Phylogeny Intracytoplasmic membrane 16S rRNA/rDNA sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brosius J, Palmer ML, Kennedy PJ, Noller HF (1978) Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci USA 75: 4801–4805Google Scholar
  2. Carbon P, Ehresmann C, Ehresmann B, Ebel J-P (1979) The complete nucleotide sequence of the ribosomal 16-S RNA from Escherichia coli. Eur J Biochem 100: 399–410Google Scholar
  3. Dryden SC, Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acids Res 18: 7267–7277Google Scholar
  4. Eckersley K, Dow CS (1980) Rhodopseudomonas blastica sp. nov.: a member of the Rhodospirillaceae. J Gen Microbiol 119: 465–473Google Scholar
  5. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791Google Scholar
  6. Gibson J, Stackebrandt E, Zablen L, Gupta R, Woese CR (1979) A phylogentic analysis of the purple photosynthetic bacteria. Curr Microbiol 3: 59–64Google Scholar
  7. Hamana K, Matsuzaki S, Niitsu M, Samejima K (1990) Synthesis of novel polyamines in Paracoccus Rhodobacter and Micrococcus. FEMS Microbiol Lett 67: 267–274Google Scholar
  8. Hoshino Y (1984) Bunri, Baiyo oyobi Doteiho (Methods for Isolation, Cultivation and Identification). In: Kitamura H, Morita S, Yamashita J (eds) Kogosei-saikin (Phototrophic Bacteria) (in Japanese). Japan Scientific Societies Press, Tokyo, pp 18–33Google Scholar
  9. Imhoff JF, Trüper HG (1989) Purple nonsulfur bacteria (Rhodospirillaceae Pfennig and Trüper 1971). In: Staley JT, Bryant MP, Pfennig N, Holt JG (eds) Bergey's manual of systematic bacteriology, vol 3. Williams and Wilkins, Baltimore, pp 1658–1682Google Scholar
  10. Imhoff JF, Trüper HG (1991) The genus Rhodospirillum and related genera. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The Prokaryotes, a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications, vol 3. Springer, New York, pp 2141–2155Google Scholar
  11. Imhoff JF, Trüper HG, Pfennig N (1984) Rearrangement of the species and genera of the phototrophic “purple nonsulfur bacteria”. Int J Syst Baceriol 34: 340–343Google Scholar
  12. Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K (1992) Rhodocista centenaria gen. nov., sp. nov. a cyst-forming anoxygenic phototrophic bacterium and its phylogenetic position in the Proteobacteria alpha group. J Gen Appl Microbiol 38: 541–551Google Scholar
  13. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120Google Scholar
  14. Lane DJ, Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82: 6955–6959Google Scholar
  15. Marmur J (1961) A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3: 208–218Google Scholar
  16. Saiki RK (1989) The design and optimization of the PCR. In: Erlich HA (ed) PCR technology: principles and applications for DNA amplification. Stockton Press, New York, pp 7–16Google Scholar
  17. Saito H, Miura K (1963) Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72: 619–629Google Scholar
  18. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4: 406–425PubMedGoogle Scholar
  19. Schleifer K-H, Schüle D, Spring S, Weizenegger M, Amann R, Ludwig W, Köhler M (1991) The genus Magnetospirillum gen. nov. Description of Magnetospirillum gryphiswaldense sp. nov. and transfer of Aquaspirillum magnetotacticum to Magnetospirillum magnetotacticum comb. nov Syst Appl Microbiol 14: 379–385Google Scholar
  20. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26: 31–43Google Scholar
  21. Tsuruoka T, Ito M, Tomioka S, Hirata A, Matsuhashi M (1988) Thermosensitive omsA mutation of Escherichia coli that causes thermoregulated release of periplasmic proteins J Bacteriol 170: 5229–5235Google Scholar
  22. Woese CR, Stackebrandt E, Weisburg WG, Paster BJ, Madigan MT, Flowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE, (1984) The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5: 315–326Google Scholar
  23. Yamada Y, Kawasaki H (1989) The molecular phylogeny of the Q8-equipped basidiomycetous yeast genera Mrakia Yamada et Komagata and Cystofilobasidium Oberwinkler et Bandoni on the partial sequences of 18S and 26S ribosomal ribonucleic acids. J Gen Appl Microbiol 35: 173–183Google Scholar

Copyright information

© Springer Verlag 1993

Authors and Affiliations

  • Hiroko Kawasaki
    • 1
  • Yasuo Hoshino
    • 2
  • Aiko Hirata
    • 1
  • Kazuhide Yamasato
    • 1
  1. 1.Institute of Applied MicrobiologyThe University of TokyoTokyoJapan
  2. 2.Department of Biology, Faculty of ScienceTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations