Journal of Automated Reasoning

, Volume 16, Issue 3, pp 321–353 | Cite as

TPS: A theorem-proving system for classical type theory

  • Peter B. Andrews
  • Matthew Bishop
  • Sunil Issar
  • Dan Nesmith
  • Frank Pfenning
  • Hongwei Xi
Research Article

Abstract

This is description of TPS, a theorem-proving system for classical type theory (Church's typed λ-calculus). TPS has been designed to be a general research tool for manipulating wffs of first- and higher-order logic, and searching for proofs of such wffs interactively or automatically, or in a combination of these modes. An important feature of TPS is the ability to translate between expansion proofs and natural deduction proofs. Examples of theorems that TPS can prove completely automatically are given to illustrate certain aspects of TPS's behavior and problems of theorem proving in higher-order logic.

AMS Subject Classification

03-04 68T15 03B35 03B15 03B10 

Key words

higher-order logic type theory mating connection expansion proof natural deduction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, P. B.: Resolution in type theory, J. Symbolic Logic 36 (1971), 414–342.CrossRefMathSciNetGoogle Scholar
  2. 2.
    Andrews, P. B.: Provability in elementary type theory, Z. Math. Logic und Grundlagen der Mathematik 20 (1974), 411–418.Google Scholar
  3. 3.
    Andrews, P. B.: Refutations by matings, IEEE Trans. Computers C-25 (1976), 801–807.MathSciNetGoogle Scholar
  4. 4.
    Andrews, P. B.: Transforming matings into natural deduction proofs, in W. Bibel and R. Kowalski (eds), 5th Conf. Automated Deduction, Les Arcs, France, Lecture Notes in Computer Sci. 87, Springer-Verlag, 1980, pp. 281–292.Google Scholar
  5. 5.
    Andrews, P. B.: Theorem proving via general matings. J. ACM 28 (1981), 193–214.CrossRefGoogle Scholar
  6. 6.
    Andrews, P. B., Miller, D. A., Cohen, E. L., and Pfenning, F.: Automating higher-order logic, in W. W. Bledsoe and D. W. Loveland (eds), Automated Theorem Proving: After 25 Years, Contemporary Mathematics Series, Vol. 29, Amer. Math. Soc., 1984, pp. 169–192.Google Scholar
  7. 7.
    Andrews, P. B.: An Introduction to Mathematical Logic and Type Theory: To Truth through Proof, Academic Press, New York, 1986.MATHGoogle Scholar
  8. 8.
    Andrews, P. B.: On connections and higher-order logic. J. Automated Reasoning 5 (1989), 257–291.CrossRefGoogle Scholar
  9. 9.
    Andrews, P. B., Issar, S., Nesmith, D., Pfenning, F., Xi, H., and Bishop, M.: TPS3 Facilities Guide for Programmers and Users, 1994.Google Scholar
  10. 10.
    Andrews, P. B., Issar, S., Nesmith, D., Pfenning, F., Xi, H., and Bishop, M.: TPS3 Facilities Guide for Users, 1994.Google Scholar
  11. 11.
    Bailin, S. C. and Barker-Plummer, D.: Z-match: An inference rule for incrementally elaborating set instantiations. J. Automated Reasoning 11 (1993), 391–428. Errata: JAR 12 (1994), 411–412.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Barker-Plummer, D.: Gazing: An approach to the problem of definition and lemma use, J. Automated, Reasoning 8 (1992), 311–344.CrossRefMathSciNetGoogle Scholar
  13. 13.
    Bibel, W.: Automated Theorem Proving, Vieweg, Braunschweig, 1987.MATHGoogle Scholar
  14. 14.
    Bishop, M., Nesmith, D., Pfenning, F., Issar, S., Andrews, P. B., and Xi, H.: TPS3 Programmer's Guide, 1994.Google Scholar
  15. 15.
    Bledsoe, W. W. and Bruell, P.: A man-machine theorem-proving system, Artificial Intelligence 5 (1974), 51–72.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Bledsoe, W. W.: A maximal method for set variables in automatic theorem proving, in J. E.Hayes, D.Michie, and L. I.Mikulich (eds), Machine Intelligence, Vol. 9, Ellis Harwood Ltd., Chichester, and Wiley, New York, 1979, pp. 53–100.Google Scholar
  17. 17.
    Bledsoe, W. W. and Feng, G.: Set-var, J. Automated Reasoning 11 (1993), 293–314.CrossRefMathSciNetGoogle Scholar
  18. 18.
    Boyer, R., Lusk, E., McCune, W., Overbeek, R., Stickel, M., and Wos, L.: Set theory in first-order logic: Clauses for Gödel's axioms, J. Automated Reasoning 2 (1986), 287–327.CrossRefGoogle Scholar
  19. 19.
    Church, A.: Introduction to Mathematical Logic, Princeton University Press, Princeton, NJ, 1956.MATHGoogle Scholar
  20. 20.
    Church, A.: A formulation of the simple theory of types, J. Symbolic Logic 5 (1940), 56–68.CrossRefMathSciNetGoogle Scholar
  21. 21.
    Constable, R. L. et al.: Implementing Mathematics with the Nuprl Proof Development System, Prentice Hall, 1986.Google Scholar
  22. 22.
    Coquand, T. and Huet, G.: The calculus of constructions, Information and Computation 76 (1988), 95–120.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Farmer, W. M., Guttman, J. D., and Thayer, J.: IMPS: An interactive mathematical proof system, J. Automated Reasoning 11 (1993), 213–248.CrossRefGoogle Scholar
  24. 24.
    Gallier, J. H., Narendran, P., Raatz, S., and Snyder, W.: Theorem proving using equational matings and rigid E-unification. J. ACM 39 (1992), 377–429.CrossRefMathSciNetGoogle Scholar
  25. 25.
    Goldson, D. and Reeves, S.: Using programs to teach logic to computer scientists, Notices Amer. Math. Soc. 40 (1993), 143–148.Google Scholar
  26. 26.
    Goldson, D., Reeves, S., and Bornat, R.: A review of several programs for the teaching of logic, Computer J. 36 (1993), 373–386.CrossRefGoogle Scholar
  27. 27.
    Gordon, M. J. C., Milner, A. J., and Wadsworth, C. P.: Edinburgh LCF, Lecture Notes Computer Sci. 78, Springer-Verlag, 1979.Google Scholar
  28. 28.
    Gordon, M. J. C.: HOL: A proof generating system for higher-order logic, in G.Birtwistle and P. A.Subrahmanyam (eds), VLSI Specification, Verification, and Synthesis, Kluwer, Dordrecht, 1988, pp. 73–128.Google Scholar
  29. 29.
    Gordon, M. J. C. and Melham, T. F.(eds): Introduction to HOL: A Theorem-Proving Environment for Higher-Order Logic, Cambridge University Press, 1993.Google Scholar
  30. 30.
    Helmink, L. and Ahn, R.: Goal directed proof construction in type theory, in G. Huet and G. Plotkin (eds), Logical Frameworks, Cambridge University Press, 1991, pp. 120–148.Google Scholar
  31. 31.
    Huet, G. P.: A mechanization of type theory, in Proc. 3rd Int. Joint Conf. Artificial Intelligence, IJCAI, 1973, pp. 139–146.Google Scholar
  32. 32.
    Huet, G. P.: A unification algorithm for typed λ-calculus, Theor. Comp. Sci. 1 (1975), 27–57.CrossRefMathSciNetGoogle Scholar
  33. 33.
    Issar, S.: Path-focused duplication: A search procedure for general matings, in AAAI-90 Proc. 8th Nat. Conf. Artificial Intelligence, AAAI Press/The MIT Press, 1990, pp. 221–226.Google Scholar
  34. 34.
    Issar, S.: Operational issues in automated theorem proving using matings, PhD Thesis, Carnegie Mellon University, 1991.Google Scholar
  35. 35.
    Issar, S., Andrews, P. B., Pfenning, F., and Nesmith, D.: GRADER Manual, 1992.Google Scholar
  36. 36.
    Kolodner, I. I.: Fixed points, Amer. Math. Monthly 71, (1964), 906.CrossRefMathSciNetGoogle Scholar
  37. 37.
    Miller, D. A., Cohen, E. L., and Andrews, P. B.: A look at TPS, in D. W. Loveland (ed.), 6th Conf. Automated Deduction, Lecture Notes in Computer Sci. 138, Springer-Verlag, 1982, pp. 50–69.Google Scholar
  38. 38.
    Miller, D. A.: Proofs in higher-order logic, PhD Thesis, Carnegie Mellon University, 1983.Google Scholar
  39. 39.
    Miller, D. A.: Expansion tree proofs and their conversion to natural deduction proofs, in R. E. Shostak (ed.), 7th Int. Conf. Automated Deduction, Lecture Notes in Computer Sci. 170, Springer-Verlag, 1984, pp. 375–393.Google Scholar
  40. 40.
    Miller, D. A.: A compact representation of proofs, Stud. Logica 46 (1987), 347–370.CrossRefGoogle Scholar
  41. 41.
    Milner, R.: A theory of type polymorphism in programming, J. Computer System Sci. 17 (1978), 348–375.CrossRefMathSciNetGoogle Scholar
  42. 42.
    Nesmith, D., Bishop, M., Andrews, P. B., Issar, S., Pfenning, F., and Xi, H.: TPS User's Manual, 1994.Google Scholar
  43. 43.
    Ohlbach, H. J.: A resolution calculus for modal logics, PhD Thesis, Department of Computer Science, University of Kaiserslautern, 1988.Google Scholar
  44. 44.
    Paulson, L. C.: The foundation of a generic theorem prover, J. Automated Reasoning 5, (1989), 363–397.CrossRefMathSciNetGoogle Scholar
  45. 45.
    Pfenning, F.: Analytic and non-analytic proofs, in R. E. Shostak (ed.), 7th Int. Conf. Automated Deduction, Lecture Notes Computer Sci. 170, Springer-Verlag, 1984, pp. 394–413.Google Scholar
  46. 46.
    Pfenning, F.: Proof transformations in higher-order logic, PhD Thesis, Carnegie Mellon University, 1987.Google Scholar
  47. 47.
    Pfenning, F. and Nesmith, D.: Presenting intuitive deductions via symmetric simplification, in M. E. Stickel (ed.), 10th Int. Conf. Automated Deduction, Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, pp. 336–350.Google Scholar
  48. 48.
    Pfenning, F., Issar, S., Nesmith, D., Andrews, P. B., Xi, H., and Bishop, M.: ETPS User's Manual, 1994.Google Scholar
  49. 49.
    Quaife, A.: Andrews' challenge problem revisited, AAR Newslet. 15 (1990), 3–7.Google Scholar
  50. 50.
    Robinson, J. A.: A machine-oriented logic based on the resolution principle, J. ACM 12 (1965), 23–41.CrossRefGoogle Scholar
  51. 51.
    Russell, B.: The Principles of Mathematics, Cambridge University Press, 1903.Google Scholar
  52. 52.
    Russell, B.: Mathematical logic as based on the theory of types, Amer. J. Math. 30 (1908), 222–262. Reprinted in [55], pp. 150–182.CrossRefMathSciNetGoogle Scholar
  53. 53.
    Snyder, W.: Higher-order E-unification, in M. E. Stickel (ed.), 10th Int. Conf. Automated Deduction, Kaiserslautern, FRG, Lecture Notes in Artificial Intelligence 449, Springer-Verlag, 1990, pp. 573–587.Google Scholar
  54. 54.
    Sutcliffe, G., Suttner, Ch., and Yemenis, T.: The TPTP problem library, in A. Bundy (ed.), Automated Deduction — CADE-12, 12th Int. Conf. Automated Deduction, Nancy, France, Lecture Notes in Artificial Intelligence 814, Springer-Verlag, 1994, pp. 252–266.Google Scholar
  55. 55.
    vanHeijenoort, J.: From Frege to Gödel, Harvard University Press, Cambridge, MA, 1967.MATHGoogle Scholar
  56. 56.
    Wallen, L. A.: Automated Deduction in Nonclassical Logics, The MIT Press, 1990.Google Scholar
  57. 57.
    Whitehead, A. N. and Russell, B.: Principia Mathematica, 3 vols, Cambridge University Press, Cambridge, England, 1910–1913.Google Scholar
  58. 58.
    Wos, L.: The problem of definition expansion and contraction, J. Automated Reasoning 3 (1987), 433–435.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Peter B. Andrews
    • 1
  • Matthew Bishop
    • 1
  • Sunil Issar
    • 2
  • Dan Nesmith
  • Frank Pfenning
    • 3
  • Hongwei Xi
    • 1
  1. 1.Mathematics DepartmentCarnegie Mellon UniversityPittsburghUSA
  2. 2.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  3. 3.Department of Computer ScienceCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations