Applied Microbiology and Biotechnology

, Volume 27, Issue 2, pp 199–205 | Cite as

Denitrification with methanol in the presence of high salt concentrations and at high pH levels

  • Jan Peter van der Hoek
  • Paul J. M. Latour
  • Abraham Klapwijk
Environmental Microbiology

Summary

In the combined ion exchange/biological denitrification process for nitrate removal from ground water, in which nitrate is removed by ion exchange, the resins are regenerated in a closed circuit by a biological denitrification reactor. This denitrification reactor eliminates nitrate from the regenerant. Methanol is used as electron donor for biological denitrification. To obtain sufficient regeneration of the resins within a reasonable time, high NaCl or NaHCO3 concentrations (10–30 g/l) in the regenerant are necessary. High NaHCO3 concentrations affected the biological denitrification in three ways: a) a slight decrease in denitrification capacity (30%) was observed; b) the yield coefficient and CH3OH/NO3-−N ratio decreased. When high NaHCO3 concentrations (above 10g NaHCO3/l) were used, the yield coefficient was 0.10–0.13 g VSS/g NO3-−N and the CH3OH/NO3-−N ratio was 2.00–2.03 g/g; c) high NaHCO3 concentrations influenced nitrite production. Nitrite is an intermediate product of biological denitrification and with rising NaHCO3 concentrations nitrite accumulation was suppressed. This was explained by the effect of high NaHCO3 concentrations on the pH in the microenvironment of the denitrifying organisms. High NaCl concentrations also resulted in a slight decrease in denitrification capacity, but the second and third effects were not observed in the presence of high NaCl concentrations.

Although the pH in the regenerant will rise as a result of biological denitrification, the capacity of a denitrification reactor did not decrease significantly when a pH of 8.8–9.2 was reached.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. American Public Health Association (1980) Standard methods for the examination of waste and wastewater, 15th edn. APHA, New YorkGoogle Scholar
  2. Arvin E, Kristensen GH (1982) Effect of denitrification on the pH in biofilms. Wat Sci Tech 14:833–848Google Scholar
  3. Balderston WL, McN. Sieburth J (1976) Nitrate removal in a closed-system aquaculture by columnar denitrification. Appl Environ Microbiol 32:808–818Google Scholar
  4. Bruyn J (1984) Ground water quality — manuring: problems with nitrate in Eastern Gelderland. H2O 17:502–505 (in Dutch)Google Scholar
  5. Christensen MH, Harremoës P (1975) A literature review of biological denitrification of sewage. Proc IAWPR Conf on Nitrogen as a Water Pollutant, Copenhagen, August 18–20, Vol 3Google Scholar
  6. Claus G, Kutzner HJ (1985a) Physiology and kinetics of autotrophic denitrification by Thiobacillus denitrificans. Appl Microbiol Biotechnol 22:283–288Google Scholar
  7. Claus G, Kutzner HJ (1985b) Denitrification of nitrate and nitric acid with methanol as carbon source. Appl Microbiol Biotechnol 22:378–381Google Scholar
  8. Engberg DJ, Schroeder ED (1975) Kinetics and stoichoimetry of bacterial denitrification as a function of cell residence time. Water Res 9:1051–1054Google Scholar
  9. European Community (1980) Council directive of 15 July 1980 relating to the quality of water intended for human consumption, 80/778/EEC. Official Journal of the European Community 23, L229:11–29Google Scholar
  10. Frick BR, Richard Y (1985) Ergebnisse und Erfahrungen mit der biologischen Denitrifikation in einem Wasserwerk. Vom Wasser 64:145–154Google Scholar
  11. Furrer OJ, Stauffer W (1986) Stickstoff in der Landwirtschaft. Gas-Wasser-Abwasser 66:460–472Google Scholar
  12. Hoek JP van der, Klapwijk A (1985) Nitrate removal from ground water. H2O 18:57–62 (in Dutch)Google Scholar
  13. Hoek JP van der, Klapwijk A (1987) Nitrate removal from ground water. Accepted for publication in Water ResGoogle Scholar
  14. Klapwijk A, Hoeven JCM van der, Lettinga G (1981) Biological denitrification in an upflow sludge blanket reactor. Water Res 15:1–6Google Scholar
  15. Klapwijk A, Jol C, Donker HJGW (1979) The application of an upflow reactor in the denitrification step of biological sewage purification. Water Res 13:1009–1015Google Scholar
  16. Klotter HE (1969) Möglichkeiten zur Denitrifikation von Grundwässern. Vom Wasser 36:93–140Google Scholar
  17. Kurt M, Denac M, Dunn IJ, Bourne JR (1984) Denitrification of drinking water using hydrogen in a biological fluidized bed reactor. Proc third European Congress on Biotechnology, München, September 10–14, Vol III:163–168Google Scholar
  18. Marsh TJ (1980) Towards a nitrate balance for England and Wales. Water Serv October 1980:601–606Google Scholar
  19. McCarty PL, Beck L, St. Amant PP (1969) Biological denitrification of agricultural wastewaters by addition of organic materials. Proc 24th Waste Conf, Purdue Univ Ext Ser 135:1271–1285Google Scholar
  20. Müller WR, Sperandio A (1986) Der Einsatz zweier Kunststoffgranulate für die Denitrification in der biologischen Wasseraufbereitung. GWF-Wasser/Abwasser 127:1–10Google Scholar
  21. Nilsson I, Ohlson S, Häggström L, Molin N, Mosbach K (1980) Denitrification of water using immobilized Pseudomonas denitrificans cells. Eur J Appl Microbiol Biotechnol 10:261–274Google Scholar
  22. NNI (1966) Dutch normalised standard method NEN 1056 IV. 6. Nederlands Normalisatie-Instituut, Delft, the NetherlandsGoogle Scholar
  23. NNI (1972) Dutch normalised standard method NEN 3235 6.3. Nederlands Normalisatie-Instituut, Delft, The NetherlandsGoogle Scholar
  24. NNI (1981) Dutch normalised standard method NEN 6440. Nederlands Normalisatie-Instituut, Delft, The NetherlandsGoogle Scholar
  25. Partos J, Richard Y (1985) Traitement de l'eau souterraine polluée par les nitrates. Wat Supply 3:75–92Google Scholar
  26. Philipot JM (1982) Une voie biologique pour la dénitrification des eaux potables. Trib Cebedeau 35:11–20Google Scholar
  27. Philipot JM, Chaffange F, Pascal O (1985) Denitrification biologique: le point sur un an de fonctionnement de la station d'Eragny. Wat Supply 3:93–98Google Scholar
  28. Richard Y, Leprince A (1982) Pollution par les nitrates: traitement disponibles. Trib Cebedeau 35:21–33Google Scholar
  29. Sontheimer H, Rohmann U (1984) Grundwasserbelastung mit Nitrat-Ursachen, Bedeutung, Lösungswege. GWF-Wasser/Abwasser 125:599–608Google Scholar
  30. Timmermans P, Van Haute A (1983) Denitrification with methanol — Fundamental study of the growth and denitrification capacity of Hyphomicrobium sp. Water Res 17:1249–1255Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Jan Peter van der Hoek
    • 1
  • Paul J. M. Latour
    • 1
  • Abraham Klapwijk
    • 1
  1. 1.Department of Water Pollution ControlWageningen Agricultural UniversityWageningenThe Netherlands

Personalised recommendations