, Volume 24, Issue 5, pp 366–371 | Cite as

Cellular composition of the human diabetic pancreas

  • J. Rahier
  • R. M. Goebbels
  • J. C. Henquin


Insulin, glucagon, somatostatin and pancreatic polypeptide cells were stained by immunoperoxidase techniques and quantitated morphometrically in sections of pancreases obtained from eight control subjects, four Type 1 (insulin-dependent) and eight Type 2 (non-insulin-dependent) diabetic patients. The whole pancreas was studied to take into consideration the heterogeneous distribution of the different cell types. From the volume density of each cell type, and the weight of each lobe of the pancreas, the total mass of endocrine tissue was calculated. It averaged 1395 mg in control subjects, 413 mg in Type 1 and 1449 mg in Type 2 diabetic patients. The loss of endocrine tissue observed in the Type 1 patients was almost restricted to the lobe poor in pancreatic polypeptide cells. In these patients, B cells were practically absent (at the most seven per section), but the ‘atrophic islets’ still contained numerous A, D, or pancreatic polypeptide cells. The mass of A, D and pancreatic polypeptide cells and the ratio of D to A cells were not different from those measured in the control subjects. This shows that the disappearance of B cells in Type 1 diabetes has no preferential effect on any other endocrine cell of the pancreas. In Type 2 diabetes, the mass of A cells was increased, whereas that of B, D and pancreatic polypeptide cells was not changed. This hyperplasia of A cells leads to a decrease in the ratio of B to A and of D to A cells. These alterations may enlighten certain aspects of the physiopathology of Type 2 diabetes.

Key words

Types 1 and 2 diabetes immunocytochemistry morphometry human pancreas 


  1. 1.
    Ferner H (1942) Beiträge zur Histobiologie der Langerhansschen Inseln des Menschen mit besonderer Berücksichtigung der Silberzellen und ihrer Beziehung zum Pankreasdiabetes. Virchows Arch 309: 87–136Google Scholar
  2. 2.
    Maclean N, Ogilvie RF (1955) Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 4: 367–376Google Scholar
  3. 3.
    Maclean N, Ogilvie RF (1959) Observations on the pancreatic islet tissue of young diabetic subjects. Diabetes 8: 83–91Google Scholar
  4. 4.
    Gepts W (1958) Die histopathologischen Veränderungen der Langerhansschen Inseln und ihre Bedeutung in der Frage der Pathogenese des menschlichen Diabetes. Endokrinologie 36: 185–211Google Scholar
  5. 5.
    Gepts W (1965) Pathologic anatomy of the pancreas in juvenile diabetes mellitus. Diabetes 14: 619–633Google Scholar
  6. 6.
    Creutzfeldt W, Theodossiou A (1957) Die Relation der A- und B-Zellen in den Pankreasinseln bei Nichtdiabetikern und Diabetikern. Beitr Path Anat 117: 235–252Google Scholar
  7. 7.
    Seifert G (1959) Die pathologische morphologie der Langerhansschen inseln, besonders beim diabetes mellitus des menschen. Verh Dtsch Ges Pathol 18: 50–84Google Scholar
  8. 8.
    Volk BW, Wellman KF (1977) Idiopathic diabetes. In: Volk BW, Wellman KF (eds) The diabetic pancreas. Bailiiere Tindall, London, pp 231–260Google Scholar
  9. 9.
    Gepts W, Lecompte PM (1981) The pancreatic islets in diabetes. Am J Med 70: 105–115Google Scholar
  10. 10.
    Orci L, Baetens D, Rufener C, Amherdt M, Ravazzola M, Studer P, Malaisse-Lagae F, Unger RH (1976) Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes. Proc Natl Acad Sci 73: 1338–1342Google Scholar
  11. 11.
    Gepts W, De Mey J, Marichal-Pipeleers M (1977) Pancreatic polypeptide cells in the pancreas of juvenile diabetics. Diabetologia 13: 27–34Google Scholar
  12. 12.
    Gepts W, De Mey J (1978) Islet cell survival determined by morphology. An immunocytochemical study of the islets of Langerhans in juvenile diabetes mellitus. Diabetes 27 (Suppl 1): 251–261Google Scholar
  13. 13.
    Orci L, Baetens D, Ravazzola M, Stefan Y, Malaisse-Lagae F (1976) Pancreatic polypeptide and glucagon: non-random distribution in pancreatic islets. Life Sci 19: 1811–1816Google Scholar
  14. 14.
    Malaisse-Lagae F, Stefan Y, Cox J, Perrelet A, Orci L (1979) Identification of a lobe in the adult human pancreas rich in pancreatic polypeptide. Diabetologia 17: 361–365Google Scholar
  15. 15.
    Rahier J, Wallon J, Gepts W, Haot J (1979) Localization of pancreatic polypeptide cells in a limited lobe of the human neonate pancreas: remnant of the ventral primordium? Cell Tissue Res 200: 359–366Google Scholar
  16. 16.
    Rahier J, Wallon J, Gepts W (1981) Volume of the pancreatic polypeptide cell rich lobe in the diabetic pancreas. Diabetologia 21: 318–319 (Abstract)Google Scholar
  17. 17.
    Sternberger LR (1979) Immunocytochemistry, 2nd edn. John Wiley & Sons, New YorkGoogle Scholar
  18. 18.
    Chalkley HW (1943) Method for the quantitative morphologic analysis of tissues. J Natl Cancer Inst 4: 47–53Google Scholar
  19. 19.
    Rahier J, Wallon J, Henquin JC (1981) Cell populations in the endocrine pancreas of human neonates and infants. Diabetologia 20: 540–546Google Scholar
  20. 20.
    Weibel ER (1973) Stereological techniques for electron microscopic morphometry. In: Hayat MA (ed) Principles and techniques of electron microscopy. Van Nostrand Reinhold, New York, 239–296Google Scholar
  21. 21.
    Snedecor GW, Cochran WG (1967) Statistical methods. 6th edition. The Iowa State University Press. Ames, Iowa USAGoogle Scholar
  22. 22.
    Doniach I, Morgan AG (1973) Islets of Langerhans in juvenile diabetes mellitus. Clin Endocrinol 2: 233–248Google Scholar
  23. 23.
    Saito K, Yaginuma N, Takahashi T (1979) Differential volumetry of A, B and D cells in the pancreatic islets of diabetic and non diabetic subjects. Tohoku J Exp Med 129: 273–283Google Scholar
  24. 24.
    Henquin JC, Horemans B, Nenquin M, Verniers J, Lambert AE (1975) Quinine-induced modifications of insulin release and glucose metabolism by isolated pancreatic islets. FEBS Lett 57: 280–284Google Scholar
  25. 25.
    National Diabetes Data Group (1979) Classification of diabetes mellitus and other categories of glucose intolerance. Diabetes 28: 1039–1057Google Scholar
  26. 26.
    Westermark P, Wilander E (1978) The influence of amyloid deposits on the islet volume in maturity onset diabetes mellitus. Diabetologia 15: 417–421Google Scholar
  27. 27.
    Fujita T (1966) D-zellen der Pankreasinseln beim Diabetes Mellitus mit besonderer Berücksichtigung ihrer Argyrophilie. Z Zellforsch 69: 363–370Google Scholar
  28. 28.
    Baetens D, Stefan Y, Ravazzola M, Malaisse-Lagae F, Coleman DL, Orci L (1978) Alteration of islet cell populations in spontaneously diabetic mice. Diabetes 27: 1–7Google Scholar
  29. 29.
    Unger RH, Orci L (1977) Possible roles of the pancreatic D-cell in the normal and diabetic states. Diabetes 26: 241–244Google Scholar
  30. 30.
    Weir GC, Knowlton SD, Atkins RF, McKennan KX, Martin DB (1976) Glucagon secretion from the perfused pancreas of streptozotocin-treated rats. Diabetes 25: 275–282Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • J. Rahier
    • 1
    • 2
  • R. M. Goebbels
    • 1
  • J. C. Henquin
    • 1
  1. 1.Department of Pathology and Unité de Diabète et CroissanceUniversity of Louvain School of MedicineBrusselsBelgium
  2. 2.Department of PathologyUniversity Hospital St. LucBrusselsBelgium

Personalised recommendations