Archive for Rational Mechanics and Analysis

, Volume 63, Issue 3, pp 273–294 | Cite as

Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity

  • Thomas J. R. Hughes
  • Tosio Kato
  • Jerrold E. Marsden


Neural Network General Relativity Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brezis, H., “Opérateurs Maximaux Monotones”, Amsterdam: North-Holland 1973.Google Scholar
  2. 2.
    Brockway, G.S., On the uniqueness of singular solutions to boundary-initial value problems in linear elastodynamics, Arch.Rational Mech. Anal. 48, 213–244 (1972).Google Scholar
  3. 3.
    Chernoff, P. & J. Marsden, “Some Properties of Infinite Dimensional Hamiltonian Systems”, Springer Lecture Notes 425 (1974).Google Scholar
  4. 4.
    Choquet-Bruhat, Y. (Y. Fourès-Bruhat), Théorème d'existence pour certain systèmes d'équations aux dérivées partielles non linéaires, Acta Math. 88, 141–225 (1952).Google Scholar
  5. 5.
    Choquet-Bruhat, Y., “Cauchy Problem”, In: Witten, L. (Ed.): Gravitation; an introduction to current research, New York: John Wiley 1962.Google Scholar
  6. 6.
    Choquet-Bruhat, Y., Solutions C d'équations hyperboliques non linéaires, C.R. Acad. Sci. Paris 272, 386–388 (1971) (see also Gen. Rel. Grav. 1 (1971)).Google Scholar
  7. 7.
    Choquet-Bruhat, Y., Problèmes mathématiques en relativité, Actes Congress Intern. Math. Tome 3, 27–32 (1970).Google Scholar
  8. 8.
    Choquet-Bruhat, Y., Stabilité de solutions d'équations hyperboliques non linéaires. Application à l'espace-temps de Minkowski en relativité générale, C.R. Acad. Sci. Paris 274, Ser. A (1972), 843. (See also Uspeskii Math. Nauk. XXIX (2) 176, 314–322 (1974).)Google Scholar
  9. 9.
    Choquet-Bruhat, Y., and L. Lamoureau-Brousse, Sur les équations de l'elasticité relativiste, C.R. Acad. Sci. Paris 276, 1317–1320 (1973).Google Scholar
  10. 10.
    Choquet-Bruhat, Y. and J.E. Marsden, tSolution of the local mass problem in general relativity Comm. Math. Phys. (to appear). (See also C.R. Acad. Si. 282, 609–612 (1976)).Google Scholar
  11. 11.
    Courant, R. & D. Hilbert, “Methods of Mathematical Physics”, Vol. II, New York: Interscience 1962.Google Scholar
  12. 12.
    Dionne, P., Sur les problèmes de Cauchy bien posés, J. Anal. Math. Jerusalem 10, 1–90 (1962/63).Google Scholar
  13. 13.
    Dorroh, J.R. & J.E. Marsden, Differentiability of nonlinear semigroups (to appear).Google Scholar
  14. 14.
    Duvaut, T. & J.L. Lions, “Les Inéquations en Mécanique et en Physique”, Paris: Dunod 1972.Google Scholar
  15. 15.
    Fichera, G., “Existence Theorems in Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  16. 16.
    Fischer, A. & J. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic system, I, Commun. Math. Phys. 28, 1–38 (1972).Google Scholar
  17. 17.
    Fischer, A. & J. Marsden, Linearization stability of nonlinear partial differential equations, Proc. Symp. Pure Math. 27, Part 2, 219–263 (1975).Google Scholar
  18. 18.
    Frankl, F., Über das Anfangswertproblem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen zweiter Ordnung, Mat. Sb. 2 (44), 814–868 (1937).Google Scholar
  19. 19.
    Friedman, A., “Partial Differential Equations”, New York: Holt, Rinehart and Winston 1969.Google Scholar
  20. 20.
    Gårding, L., “Cauchy's Problem for Hyperbolic Equations”, Lecture Notes, Chicago (1957).Google Scholar
  21. 21.
    Gårding, L., Energy inequalities for hyperbolic systems, in “Differential Analysis”, Bombay Colloq. (1964), 209–225, Oxford: University Press 1964.Google Scholar
  22. 22.
    Gurtin, M.E., “The Linear Theory of Elasticity”, in Handbuch der Physik (ed. C. Truesdell), Vol. IVa/2, Berlin-Heidelberg-New York: Springer 1972.Google Scholar
  23. 23.
    Hawking, S.W. & G.F.R. Ellis, “The Large Scale Structure of Spacetime”, Cambridge (1973).Google Scholar
  24. 24.
    Hille, E. & R. Phillips, “Functional Analysis and Semi-groups”, AMS (1967).Google Scholar
  25. 25.
    Kato, T., “Perturbation Theory for Linear Operators”, Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  26. 26.
    Kato, T., Linear evolution equations of “hyperbolic” type, J. Fac. Sci. Univ. Tokyo 17, 241–258 (1970).PubMedGoogle Scholar
  27. 27.
    Kato, T., Linear evolution equations of “hyperbolic” type II, J. Math. Soc. Japan 25, 648–666 (1973).Google Scholar
  28. 28.
    Kato, T., The Cauchy problem for quasi-linear symmetric hyperbolic systems, Arch. Rational Mech. Anal. 58, 181–205 (1975).Google Scholar
  29. 29.
    Kato, T., “Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations”, Springer Lecture Notes 448, 25–70 (1975).Google Scholar
  30. 30.
    Knops, R.J. & L.E. Payne, “Uniqueness Theorems in Linear Elasticity”, New York: Springer 1971.Google Scholar
  31. 31.
    Knops, R.J. & L.E. Payne, Continuous data dependence for the equations of classical elastodynamics, Proc. Camb. Phil. Soc. 66, 481–491 (1969).Google Scholar
  32. 32.
    Knops, R.J. & E.W. Wilkes, “Theory of Elastic Stability”, in Handbuch der Physik (ed. C. Truesdell), Vol. VIa/3, Berlin-Heidelberg-New York: Springer 1973.Google Scholar
  33. 33.
    Kōmura, Y., Nonlinear semi-groups in Hilbert space, J. Math. Soc. Japan 19, 473–507 (1967).Google Scholar
  34. 34.
    Krzyzanski, M. & J. Schauder, Quasilineare Differentialgleichungen zweiter Ordnung vom hyperbolischen Typus, Gemischte Randwertaufgaben, Studia. Math. 5, 162–189 (1934).Google Scholar
  35. 35.
    Lax, P., Cauchy's problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure and Appl. Math. 8, 615–633 (1955).Google Scholar
  36. 36.
    Lax, P., “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves”, SIAM (1973).Google Scholar
  37. 37.
    Leray, J., “Hyperbolic Differential Equations”, Institute for Advanced Study (Notes) (1953).Google Scholar
  38. 38.
    Lichnerowicz, A., “Relativistic Hydrodynamics and Magnetohydrodynamics”, Amsterdam: Benjamin 1967.Google Scholar
  39. 39.
    Marsden, J., “Applications of Global Analysis in Mathematical Physics”, Publish or Perish (1974).Google Scholar
  40. 40.
    Marsden, J., The existence of non-trivial, complete, asymptotically flat spacetimes, Publ. Dept. Math. Lyon 9, 183–193 (1972).Google Scholar
  41. 41.
    Morrey, C.B., “Multiple Integrals in the Calculus of Variations”, Berlin-Heidelberg-New York: Springer 1966.Google Scholar
  42. 42.
    Palais, R., “Foundations of Global Nonlinear Analysis”, Amsterdam: Benjamin 1968.Google Scholar
  43. 43.
    Petrovskii, I., Über das Cauchysche Problem für lineare und nichtlineare hyperbolische partielle Differentialgleichungen, Mat. Sb. 2 (44), 814–868 (1937).Google Scholar
  44. 44.
    Schauder, J., Das Anfangswertproblem einer quasi-linearen hyperbolischen Differentialgleichung zweiter Ordnung in beliebiger Anzahl von unabhängigen Veränderlichen, Fund. Math. 24, 213–246 (1935).Google Scholar
  45. 45.
    Sobolev, S.S., “Applications of Functional Analysis in Mathematical Physics”, Translations of Math. Monographs 7, Am. Math. Soc. (1963).Google Scholar
  46. 46.
    Sobolev, S.S., On the theory of hyperbolic partial differential equations, Mat. Sb. 5 (47), 71–99 (1939).Google Scholar
  47. 47.
    Wang, C.-C. & C. Truesdell, “Introduction to Rational Elasticity”, Leyden: Noordhoff 1973.Google Scholar
  48. 48.
    Wheeler, L. & R.R. Nachlinger, Uniqueness theorems for finite elastodynamics, J. Elasticity 4, 27–36 (1974).Google Scholar
  49. 49.
    Wilcox, C.H., Wave operators and asymptotic solutions of wave propagation problems of classical physics, Arch. Rational Mech. Anal. 22, 37–78 (1966).Google Scholar
  50. 50.
    Yosida, K., “Functional Analysis”, Berlin-Heidelberg-New York: Springer 1971.Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Thomas J. R. Hughes
    • 1
    • 2
  • Tosio Kato
    • 1
    • 2
  • Jerrold E. Marsden
    • 1
    • 2
  1. 1.Division of Engineering and Applied ScienceCalifornia Institute of TechnologyPasadena
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations