Archive for Rational Mechanics and Analysis

, Volume 107, Issue 1, pp 37–69

Chaotic dynamics near triple collision

  • Richard Moeckel
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [C]
    C. Conley, Invariant sets which carry a one-form, JDE 8 (1970), 587–594.Google Scholar
  2. [D1]
    Robert L. Devaney, Triple collision in the planar isosceles three-body problem, Inv. Math. 60 (1980), 249–267.Google Scholar
  3. [D2]
    Robert L. Devaney, Structural stability of homothetic solutions of the collinear n-body problem, Cel. Mech. 19 (1979), 391–404.Google Scholar
  4. [E]
    R. W. Easton, Isolating blocks and symbolic dynamics, JDE 17 (1975), 98–118.Google Scholar
  5. [Eu]
    L. Euler, De moto rectilineo trium corporum se mutuo attrahentium, Novi Comm. Acad. Sci. Imp. Petrop. 11 (1767), 144–151.Google Scholar
  6. [L]
    J. L. Lagrange, Oeuvres, vol. 6, 272–292, Paris 1873.Google Scholar
  7. [M1]
    Richard Moeckel, Heteroclinic phenomena in the isosceles three-body problem, SIAM J. Math. Anal. 15 (1984), 857–876.Google Scholar
  8. [M2]
    Richard Moeckel, Spiralling invariant manifolds, to appear.Google Scholar
  9. [M3]
    Richard Moeckel, Orbits near triple collision in the three-body problem, Indiana Univ. Math. Jour. 32 (1983), 221–240.Google Scholar
  10. [M4]
    Richard Moeckel, Orbits of the three-body problem which pass infinitely close to triple collision, Am. J. Math. 103 (1981), 1,323–1,341.Google Scholar
  11. [Mc1]
    Richard McGehee, Singularities in classical celestial mechanics, Proc. Int. Cong. Math. 827–834, Helsinki, 1978.Google Scholar
  12. [Mc2]
    Richard McGehee, Triple collision in the collinear three-body problem, Inv. Math. 27 (1974), 191–227.Google Scholar
  13. [R-S]
    C. Robinson & D. Saari, N-body spatial parabolic orbits asymptotic to collinear central configurations, JDE 48 (1983), 434–459.Google Scholar
  14. [S]
    C. Simo, Analysis of triple collision in the isosceles problem, in “Classical Mechanics and Dynamical Systems”, Maral Dekher, New York, 1980.Google Scholar
  15. [S-L]
    S. Simo & J. Llibre, Characterization of transversal homothetic solutions in the n-body problem, Arch. Rational Mech. 77 (1981), 189–198.Google Scholar
  16. [S-M]
    C. Siegel & J. Moser, Lectures on Celestial Mechanics, Springer-Verlag, New York, 1971.Google Scholar
  17. [Sm]
    S. Smale, Topology and mechanics I, Inv. Math. bd10 (1970), 305–331; II, Inv. Math. 11 (1970), 45–64.Google Scholar
  18. [W]
    J. Waldvogel, The three-body problem near triple collision, Celes. Mech. 14 (1976), 287–300.Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Richard Moeckel
    • 1
  1. 1.School of MathematicsUniversity of Minnesota-Twin CitiesMinneapolis

Personalised recommendations