Uniqueness of regular and singular equilibria for spherically symmetric problems of nonlinear elasticity

  • Jeyabal Sivaloganathan


Neural Network Complex System Nonlinear Dynamics Electromagnetism Nonlinear Elasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. R. A. Adams (1975), Sobolev Spaces, New York, Academic Press.Google Scholar
  2. J. M. Ball (1982), Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Phil. Trans. Roy. Soc. A 306, 557–611.Google Scholar
  3. J. M. Ball (1984), Differentiability properties of symmetric and isotropic functions, Duke Math. J. 50, 699–727.Google Scholar
  4. J. M. Ball, J. C. Currie & P. J. Olver (1981), Null Lagrangians, weak continuity and variational problems of arbitrary order, J. Funct. Anal. 41, 135–174.Google Scholar
  5. L. Cesari (1983), Optimization-theory and applications, Springer-Verlag, Berlin-Heidelberg-New York.Google Scholar
  6. T. B. Cox & J. R. Low (1974), An investigation of the plastic fracture of AISI 4340 and 18 Nickel-200 Grade maraging steels, Mat. Trans. 5, 1457–1470.Google Scholar
  7. A. E. Green (1973), On some general formulae in finite elastostatics, Arch. Rational Mech. Anal. 50, 73–80.Google Scholar
  8. J. W. Hancock & M. J. Cowling (1977), The initiation of cleavage by ductile tearing, Fracture 1977, 2, ICF 4, Waterloo, Canada.Google Scholar
  9. P. Hartman (1973), Ordinary differential equations, Wiley.Google Scholar
  10. C. O. Horgan & R. Abeyaratne (1985), A bifurcation problem for a compressible nonlinearly elastic medium: growth of a microvoid, (to appear in J. of Elasticity).Google Scholar
  11. R. J. Knops & C. A. Stuart (1984), Quasiconvexity and uniqueness of equilibrium solutions in nonlinear elasticity, Arch. Rational Mech. Anal. 86, 233–249.Google Scholar
  12. C. A. Stuart (1985), Radially symmetric cavitation for hyperelastic materials, Ann. Inst. H. Poincaré, Anal. Non. Linéaire 2, 33–66.Google Scholar
  13. C. Truesdell & W. Noll (1965), The non-linear field theories of mechanics, Handbuch der Physik III/3, Berlin, Heidelberg, New York, Springer.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1986

Authors and Affiliations

  • Jeyabal Sivaloganathan
    • 1
  1. 1.School of MathematicsUniversity of BathBathEngland

Personalised recommendations