Advertisement

Journal of Applied Electrochemistry

, Volume 26, Issue 4, pp 451–457 | Cite as

Silver electrocrystallization from a nonpolluting aqueous leaching solution containing ammonia and chloride

  • A. Serruya
  • B. R. Scharifker
  • I. González
  • M. T. Oropeza
  • M. Palomar-Pardavé
Papers

Abstract

Silver electrocrystallization from aqueous solutions at pH11, pC10 and pNH3 − 0.2, where Ag(NH3)2 is the dominant Ag(i) species, has been studied. In spite of the complexities of this medium, the experimental results can be satisfactorily described in terms of multiple nucleation and diffusion-controlled growth of hemispherical nuclei. Nucleation rates, A, and number densities of active sites on the electrode surface, N0, were determined from potentiostatic current transients as a function of overpotential. Saturation number densities of silver nuclei on the electrode surface obtained from the A and N0 values were found to be in excellent agreement with those obtained from the direct, microscopic observation of the electrode surface. Spatial distributions of nuclei were also analysed for silver electrodeposited at different potentials. It was found that nuclei were uniformly distributed when electrodeposited at low overpotentials, whereas inhibition of nucleation close to already established nuclei occurred at higher overpotentials. From the change of the true nucleation rate with overpotential, it was found that the critical nucleus is formed by a single atom within the −100 to −300 mV over-potential range.

Keywords

Leaching Electrode Surface Excellent Agreement Microscopic Observation Nucleation Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. R. Thirsk and J. A. Harrison, ‘A Guide to the Study of Electrode Kinetics”, Academic Press, London (1972), chapter 3.Google Scholar
  2. [2]
    E. Bosco and S. K. Rangarajan, J. Chem. Soc. Faraday Trans. 177 (1981) 1963.Google Scholar
  3. [3]
    B. Bhattacharjee and S. K. Rongarajan, J. E1ectroanal. Chem. 302 (1991) 207.Google Scholar
  4. [4]
    M. Y. Abyoneh and M. Fleischmann, Electrochim. Acta 27 (1982) 1513.Google Scholar
  5. [5]
    E. Bosco and S. K. Rangarajan, J. Electroanal. Chem. 134 (1982) 213.Google Scholar
  6. [6]
    R. G. Borradas, F. C. Benson, S. Fletcher and J. D. Porter, 85 (1977) 55.Google Scholar
  7. [7]
    G. Guanawardena, G. Hills, I. Montenegro and B. Schariflcer, 138 (1982) 225.Google Scholar
  8. [8]
    B. R. Schorifker and G. Hills, Electrochim. Acta 28 (1983) 879.Google Scholar
  9. [9]
    B. R. Schorifker and J. Mostany, J. E1ectroanal. Chem. 177 (1984) 13.Google Scholar
  10. [10]
    M. Sluyters-Rehbach, J. H. O. J. Wijenberg, E. Bosco and J. H. Sluyters, 236 (1987) 1.Google Scholar
  11. [11]
    M. Y. Abyoneh, Electrochim. Acta 36 (1991) 727.Google Scholar
  12. [12]
    F. C. Wolsh and M. E. Herron, J. Phys. D. Appl. Phys. 24 (1991) 217.Google Scholar
  13. [13]
    R. Greef, R. Peat, L. M. Peter, D. Pletcher and J. Robinson, ‘Instrumental Methods in Electrochemistry’, Ellis Horwood, Chichester (1985), chapter 9.Google Scholar
  14. [14]
    A. Milchev, S. Stoyonov and R. Kaischev, Thin Solid Films 22 (1974) 255.Google Scholar
  15. [15]
    A. Milchev, S. Stoyonov and R. Kaischev, 22 (1974) 267.Google Scholar
  16. [16]
    D. Walton, J. Chem. Phys. 37 (1962) 2182.Google Scholar
  17. [17]
    A. Milchev and S. Stoyanov, J. Electroanal. Chem. 72 (1976) 33.Google Scholar
  18. [18]
    A. Milchev, E. Vossileva and V. Kertov, 107 (1980) 323.Google Scholar
  19. [19]
    A. Milchev and E. Vassileva, 107 (1980) 337.Google Scholar
  20. [20]
    V. Tsakova and A. Milchev, 197 (1986) 359.Google Scholar
  21. [21]
    , 235 (1987) 237.Google Scholar
  22. [22]
    , 235 (1987) 249.Google Scholar
  23. [23]
    G. Guanawardena, G. Hills and I. Montenegro, 138 (1982) 24l.Google Scholar
  24. [24]
    G. Guanawardena, G. Hills, I. Montenegro and B. Scharifker, 138 (1982) 255.Google Scholar
  25. [25]
    [25]J. Mostany, J. Mozoto and B. R. Schorifker, 177 (1984) 25.Google Scholar
  26. [26]
    A. Milchev, B. Schorifker and G. Hills, 132 (1982) 277.Google Scholar
  27. [27]
    K. N. Han and M. Xinghui, US Patent 5 114 687 (1992).Google Scholar
  28. [28]
    M. T. Oropezo, Thesis UAM-I, Mexico (1991).Google Scholar
  29. [29]
    M. Palomar, Thesis, UAM-I, Mexico (1992).Google Scholar
  30. [30]
    M. T. Oropezo, I. González and M. Palomar, ‘Nonpollution composition of a leaching bath for precious metal recovery’, Mexican Patent 177 685 (1995).Google Scholar
  31. [31]
    A. Rojas and I. González, Analyt. Chim. Acta 187 (1986) 279.Google Scholar
  32. [32]
    A. Rojas-Hernández, M. T. Ramírez, J. G. Ibáñez and I. González, J. Electrochemical Soc. 138 (1991) 365.Google Scholar
  33. [33]
    A. Rojas-Hernández, M. T. Ramírez, I. González and J. G. Ibáñez, Analyt. Chim. Acta 259 (1992) 95.Google Scholar
  34. [34]
    A. Rojas-Hernández, M. T. Ramírez and I. González, Analyt. Chim. Acta 278 (1993) 321.Google Scholar
  35. [35]
    , 278 (1993) 335.Google Scholar
  36. [36]
    C. Q. Cui, S. P. Jiang and A. C. Tseung, J. Electrochem. Soc. 137 (1990) 3418.Google Scholar
  37. [37]
    R. T. Corlin, W. Crawford and M. Bersch, 139 (1992) 2720.Google Scholar
  38. [38]
    L. Legrand, A. Tronchan and R. Messina, 141 (1994) 378.Google Scholar
  39. [39]
    [39]C. L. Hussey and X. Xu, 138 (1991) 1886.Google Scholar
  40. [40]
    M. Sánchez, C. F. Alonso and J. M. Palacios, J. Appl. Electrochem. 23 (1993) 364.Google Scholar
  41. [41]
    L. Bonou, M. Eyroud and J. Crousier, 24 (1994) 906.Google Scholar
  42. [42]
    J. Mostany, Memorias del IV Encuentro Nacional de Electroquímica, (edited by B. R. Scharifker, J. J. Suárez and J. L. Mostany eds), Soc. Venez. Electroquím., Caracos (1991) pp. 17–28.Google Scholar
  43. [43]
    A. Serruya, J. Mostany and B. R. Scharifker, J. Chem. Soc. Faraday Trans. 89 (1993) 255.Google Scholar
  44. [44]
    B. R. Scharifker, in ‘Electrochemistry in Transition’, (edited by O. J. Murphy et al. eds) Plenum Press, New York (1992), chapter 31.Google Scholar
  45. [45]
    B. R. Scharifker, J. Mostany and A. Serruya, Electrochim. Acta 37 (1992) 2503.Google Scholar
  46. [46]
    A. Serruya, B. R. Scharifker, M. T. Oropeza and I. González, Resúmenes del XI Congreso Iberoamericano de Electroquímica, Aguas de Lindoio, SP, Brazil (1994) pp. 641–643.Google Scholar
  47. [47]
    R. L. Deutscher and S. Fletcher, J. E1ectroanal. Chem. 277 (1990) 1.Google Scholar
  48. [48]
    A. Milchev, W. S. Kruijt, M. Sluyters-Rehbach and J. H. Sluyters, J. E1ectroanal. Chem. 350 (1993) 89.Google Scholar
  49. [49]
    A. Milchev, J. Chem. Phys. 100 (1994) 5160.Google Scholar
  50. [50]
    J. Mostany, A. Serruyo and B. R. Scharifker, J. Electroanal. Chem. 383 (1995) 37.Google Scholar
  51. [51]
    I. González, M. Palomar-Pardavé, M. T. Oropeza, J. Mostany, A. Serruyo and B. R. Scharifker, in preparation.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • A. Serruya
    • 1
  • B. R. Scharifker
    • 1
  • I. González
    • 2
  • M. T. Oropeza
    • 2
  • M. Palomar-Pardavé
    • 2
  1. 1.Departamento de QuímicaUniversidad Simón BolívarCaracasVenezuela
  2. 2.Departamento de QuímicaUniversidad Autónoma Metropolitana-IztapalapaMexico D.FMexico

Personalised recommendations