Advertisement

Archive for Rational Mechanics and Analysis

, Volume 98, Issue 2, pp 123–142 | Cite as

The gradient theory of phase transitions and the minimal interface criterion

  • Luciano Modica
Article

Keywords

Neural Network Phase Transition Complex System Nonlinear Dynamics Electromagnetism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. D. Alikakos & K. C, Shaing. On the singular limit for a class of problems modelling phase transitions. To appear.Google Scholar
  2. 2.
    F. Almgren & M. E. Gurtin. To appear.Google Scholar
  3. 3.
    G. Anzellotti & M. Giaquinta. Funzioni BV e tracce. Rend. Sem. Mat. Univ.Padova, 60 (1978), 1–22.Google Scholar
  4. 4.
    H. Attouch. Variational Convergence for Functions and Operators. Appl. Math. Series, Pitman Adv. Publ. Program, Boston, London, Melbourne, 1984.Google Scholar
  5. 5.
    J. Carr, M. E. Gurtin & M. Slemrod. Structured phase transitions on a finite interval. Arch. Rational Mech. Anal., 86 (1984), 317–351.Google Scholar
  6. 6.
    E. de Giorgi. Su una teoria generale della misura (r — 1)-dimensionale in uno spazio a r dimensioni. Ann. Mat. Pura Appl., (4) 36 (1954), 191–213.Google Scholar
  7. 7.
    E. de Giorgi. Nuovi teoremi relativi alle misure (r — 1)-dimensionali in uno spazio a r dimensioni. Ricerche Mat., 4 (1955), 95–113.Google Scholar
  8. 8.
    E. de Giorgi. Sulla convergenza di alcune successioni di integrali del tipo dell'area. Rendiconti di Matematica. (4) 8 (1975), 277–294.Google Scholar
  9. 9.
    E. de Giorgi & T. Franzoni. Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei, Rend. Cl. Sc. Mat. Fis. Natur., (8) 58 (1975), 842–850.Google Scholar
  10. 10.
    H. Federer. Geometric Measure Theory. Springer-Verlag, Berlin, Heidelberg, New York, 1968.Google Scholar
  11. 11.
    W. H. Fleming & R. W. Rishel. An integral formula for total gradient variation. Arch. Math., 11 (1960), 218–222.Google Scholar
  12. 12.
    D. Gilbarg & N. S. Trudinger. Elliptic Partial Differential Equations of Second-Order. Springer-Verlag, Berlin, Heidelberg, New York, 1977.Google Scholar
  13. 13.
    E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkhäuser Verlag, Basel, Boston, Stuttgart, 1984.Google Scholar
  14. 14.
    E. Gonzalez, U. Massari & I. Tamanini. On the regularity of boundaries of sets minimizing perimeter with a volume constraint. Indiana Univ. Math. J., 32 (1983), 25–37.Google Scholar
  15. 15.
    M. E. Gurtin. Some results and conjectures in the gradient theory of phase transitions. Institute for Mathematics and Its Applications, University of Minnesota, preprint n. 156 (1985).Google Scholar
  16. 16.
    M. E. Gurtin. On phase transitions with bulk, interfacial, and boundary energy. Arch. Rational Mech. Anal., 96 (1986), 243–264.Google Scholar
  17. 17.
    M. E. Gurtin & H. Matano. On the structure of equilibrium phase transitions within the gradient theory of fluids. To appear.Google Scholar
  18. 18.
    M. Marcus & V. J. Mizel. Nemitsky Operators on Sobolev Spaces. Arch. Rational Mech. Anal., 51 (1973), 347–370.Google Scholar
  19. 19.
    U. Massari & M. Miranda. Minimal Surfaces of codimension one. North-Holland Math. Studies 91, North-Holland, Amsterdam, New York, Oxford, 1984.Google Scholar
  20. 20.
    L. Modica & S. Mortola. Un esempio di Γ-convergenza. Boll. Un. Mat. Ital., (5) 14-B (1977), 285–299.Google Scholar
  21. 21.
    L. Modica & S. Mortola. The Γ-convergence of some functional. Istituto Matematico “Leonida Tonelli”, Università di Pisa, preprint n. 77-7 (1977).Google Scholar
  22. 22.
    A. Novick-Cohen & L. A. Segel. Nonlinear aspects of the Cahn-Hilliard equation. Physica, 10-D (1984), 278–298.Google Scholar

Copyright information

© Springer-Verlag GmbH & Co 1987

Authors and Affiliations

  • Luciano Modica
    • 1
  1. 1.Dipartimento di MatematicaUniversità di PisaItaly

Personalised recommendations