Archive for Rational Mechanics and Analysis

, Volume 30, Issue 2, pp 148–172 | Cite as

On global solution of nonlinear hyperbolic equations

  • D. H. Sattinger


Neural Network Complex System Nonlinear Dynamics Electromagnetism Global Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bers, L., F. John, & M. Schecter, Partial Differential Equations. New York: Interscience 1964.Google Scholar
  2. 2.
    Courant, R., & D. Hilbert, Methods of Mathematical Physics, vol. 1. New York: Interscience 1953.Google Scholar
  3. 3.
    Courant, R., & D. Hilbert, Methods of Mathematical Physics, vol. 2. New York: Interscience 1962.Google Scholar
  4. 4.
    Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nach. 4, 213–231 (1950–51).Google Scholar
  5. 5.
    Keller, J.B., On solutions of non-linear wave equations. Comm. Pure and App. Math. 10, 523–530 (1957).Google Scholar
  6. 6.
    Krasnosel'skii, M. A., & Ya. B. Rutickii, Convex Functions and Orlicz Spaces. Groningen: Noordhoof Ltd. 1961.Google Scholar
  7. 7.
    Sattinger, D., Stability of nonlinear hyperbolic equations. Arch. Rational Mech. Anal. 28, 226–244 (1968).Google Scholar
  8. 8.
    Sobolev, S. L., Applications of Functional Analysis in Mathematical Physics. American Mathematical Society, Providence, 1963.Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • D. H. Sattinger
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaLos Angeles

Personalised recommendations