Archive for Rational Mechanics and Analysis

, Volume 82, Issue 2, pp 165–179

On inequalities of Korn, Friedrichs and Babuška-Aziz

  • C. O. Horgan
  • L. E. Payne


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Korn, A., Über einige Ungleichungen, welche in der Theorie der elastischen und elektrischen Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. Umiejet (Classe Sci. Math. Nat.) 705–724 (1909).Google Scholar
  2. 2.
    Friedrichs, K. O., On certain inequalities and characteristic value problems for analytic functions and for functions of two variables. Trans. Amer. Math. Soc. 41, 321–364 (1937).Google Scholar
  3. 3.
    Friedrichs, K. O., On the boundary-value problems of the theory of elasticity and Korn's inequality. Ann. of Math. 48, 441–471 (1947).Google Scholar
  4. 4.
    Bernstein, B., & R. A. Toupin, Korn inequalities for the sphere and circle. Arch. Rational Mech. Anal. 6, 51–64 (1960).Google Scholar
  5. 5.
    Payne, L. E., & H. F. Weinberger, On Korn's inequality. Arch. Rational Mech. Anal. 8, 89–98 (1961).Google Scholar
  6. 6.
    Dafermos, C. M., Some remarks on Korn's inequality. Z. Angew. Math. Phys. 19, 913–920 (1968).Google Scholar
  7. 7.
    Hlaváček, I., & J. Nečas, On inequalities of Korn's type. Part I and II. Arch. Rational Mech. Anal. 36, 305–334 (1970).Google Scholar
  8. 8.
    Horgan, C. O., & J. K. Knowles, Eigenvalue problems associated with Korn's inequalities. Arch. Rational Mech. Anal. 40, 384–402 (1971).Google Scholar
  9. 9.
    Fichera, G., Existence theorems in elasticity; Boundary value problems of elasticity with unilateral constraints, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/2, pp. 347–424. Springer-Verlag, Berlin, Heidelberg, New York 1972.Google Scholar
  10. 10.
    Gurtin, M. E., The linear theory of elasticity, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/2, pp. 1–295. Springer-Verlag, Berlin, Heidelberg, New York 1972.Google Scholar
  11. 11.
    Knops, R. J., & E. W. Wilkes, Theory of elastic stability, Handbuch der Physik, S. Flügge and C. Truesdell eds., Vol. 6a/3, pp. 125–302. Springer-Verlag, Berlin, Heidelberg, New York 1973.Google Scholar
  12. 12.
    Horgan, C. O., On Korn's inequality for incompressible media. SIAM J. Appl. Math. 28, 419–430 (1975).Google Scholar
  13. 13.
    Horgan, C. O., Inequalities of Korn and Friedrichs in elasticity and potential theory. Z. Angew. Math. Phys. 26, 155–164 (1975).Google Scholar
  14. 14.
    Villaggio, P., Qualitative Methods in Elasticity. Noordhoff, Leyden, 1977.Google Scholar
  15. 15.
    Babuška, I., & A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, A. K. Aziz ed., 5–359. Academic Press, New York, 1972.Google Scholar
  16. 16.
    Oden, J. T., & J. N. Reddy, Variational Methods in Theoretical Mechanics. Springer-Verlag, Berlin, Heidelberg, New York 1976.Google Scholar
  17. 17.
    Ciarlet, P. G., The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.Google Scholar
  18. 18.
    Toupin, R. A., Saint-Venant's principle. Arch. Rational Mech. Anal. 18, 83–96 (1965).Google Scholar
  19. 19.
    Berdichevskii, V. L., On the proof of the Saint-Venant principle for bodies of arbitrary shape. J. Appl. Math. Mech. 38, 799–813 (1975).Google Scholar
  20. 20.
    Horgan, C. O., & J. K. Knowles, Recent developments concerning Saint-Venant's principle, Advances in Applied Mechanics, J. W. Hutchinson ed., Vol. 23, Chapter 3, Academic Press, New York, 1983.Google Scholar
  21. 21.
    Ladyzhenskaya, O. A., & V. A. Solonnikov, Some problems of vector analysis and generalized formulations of boundary-value problems for the Navier-Stokes equations. J. Soviet Math. 10, 257–286 (1978).Google Scholar
  22. 22.
    Horgan, C. O., & L. T. Wheeler, Spatial decay estimates for the Navier-Stokes equations with application to the problem of entry flow. SIAM J. Appl. Math. 35, 97–116 (1978).Google Scholar
  23. 23.
    Nitsche, J. A., On Korn's second inequality. R.A.I.R.O. J. of Numerical Analysis 15, 237–248 (1981).Google Scholar
  24. 24.
    Mikhlin, S. G., Variational Methods in Mathematical Physics (translated by T. Boddington). Macmillan, New York, 1964.Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • C. O. Horgan
    • 1
  • L. E. Payne
    • 1
  1. 1.Michigan State University East Lansing and Cornell UniversityIthaca

Personalised recommendations