Archive for Rational Mechanics and Analysis

, Volume 70, Issue 2, pp 113–123

The eversion of thick spherical shells

  • Stuart S. Antman
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antman, S.S., Existence and nonuniqueness of axisymmetric equilibrium states of nonlinearly elastic shells. Arch. Rational Mech. Anal. 40, 329–371 (1971).Google Scholar
  2. Antman, S.S., Ordinary differential equations of nonlinear elasticity. Arch. Rational Mech. Anal. 61, 307–393 (1976).Google Scholar
  3. Antman, S.S., A family of semi-inverse problems of nonlinear elasticity, Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Amsterdam: North Holland 1978, 1–24.Google Scholar
  4. Antman, S.S., & H. Brezis, The existence of orientation-preserving deformations in nonlinear elasticity, Nonlinear Analysis and Mechanics, vol. 2, edited by R.J. Knops. London: Pitman 1978, 1–29.Google Scholar
  5. Brezis, H., Équations et inéquations non linéaires dans les espaces vectoriels en dualité. Ann. Inst. Fourier, 18, 115–175 (1968).Google Scholar
  6. Green, A.E., & J.E. Adkins, Large elastic deformations. Oxford: Clarendon Press 1960.Google Scholar
  7. Lions, J.-L., Quelques méthodes de résolution des problèmes aux limites non linéaires. Paris: Dunod 1969.Google Scholar
  8. Truesdell, C., Some challenges offered to analysis by rational thermodynamics, Contemporary Developments in Continuum Mechanics and Partial Differential Equations. Amsterdam: North Holland 1978, 495–603.Google Scholar
  9. Truesdell, C., & W. Noll, The nonlinear field theories of mechanics, Handbuch der Physik, Vol. III/3. Berlin-Heidelberg-New York: Springer 1965.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Stuart S. Antman
    • 1
  1. 1.Department of MathematicsUniversity of MarylandCollege Park

Personalised recommendations