Advertisement

Applied Microbiology and Biotechnology

, Volume 21, Issue 6, pp 374–377 | Cite as

Uranium mobilization from low-grade ore by cyanobacteria

  • Michael G. Lorenz
  • Wolfgang E. Krumbein
Biotechnology

Summary

Three cyanobacterial isolates (two LPP-B forms and one Anabaena or Nostoc species) from different environments could mobilize uranium from low-grade ores. After 80 days, up to 18% uranium had been extracted from coal and 51% from carbonate rock by the filamentous cyanobacterium OL3, a LPP-B form. Low growth requirements with regard to light and temperature optima make this strain a possible candidate for leaching neutral and alkaline low-grade uranium ores.

Keywords

Uranium Carbonate Rock Anabaena Nostoc Filamentous Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agate AD, Deshpande HA (1977) Leaching of manganese ores using Arthrobacter species. In: Schwartz W (ed) Gesellschaft für Biotechnologische Forschung mbH Braunschweig-Stöckheim, Conference bacterial leaching. Verlag Chemie, Weinheim/New York, pp 243–250Google Scholar
  2. Berthelin J, Belgy G, Magne R (1977) Some aspects of the mechanism of solubilization and insolubilization of uranium from granites by heterotrophic microorganisms. In: Schwartz W (ed) Gesellschaft für Biotechnologische Forschung mbH Braunschweig-Stöckheim, Conference bacterial leaching. Berlag Chemie, Weinheim/New York, pp 251–260Google Scholar
  3. Busev AI, Tittsova VG, Ivanov VN (1981) Uranium. In: Analytical chemistry of rare element. MIR Publishers, Moscow, pp 123–134Google Scholar
  4. D'Souza NZ, D'Souza JD (1983) Studies on iron solubilization using a mixture of Rhodopseudomonas sphaeroides with Pseudomonas, Bacillus and Micrococcus species. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Italy, pp 11–18Google Scholar
  5. Groudev SN, Genchev FN, Groudeva VI, Petrov EC, Mochev LD (1983) Removal of iron from sands by means of microorganisms. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, Italy, pp 441–450Google Scholar
  6. Hassett JM, Jennett JC, Smith JE (1981) Microplate technique for determining accumulation of metals by algae. Appl Environ Microbiol 41:1097–1106Google Scholar
  7. Horikoshi T, Nakajima A, Sakaguchi T (1979) Uptake of uranium from sea water by Synechococcus elongatus. J Ferment Technol 57:191–194Google Scholar
  8. Jennett JC, Hassett JM, Smith JE (1977) Removal of heavy metal trace elements from water by algae: Quantitative screening methods for selecting efficient organisms. In: Proceedings of the 11th conference on trace substances and environmental health. University of Missouri-Columbia, pp 448–454Google Scholar
  9. Kiel H (1977) Laugung von Kupferkarbonat-und Kupfersilikat-Erzen mit heterotrophen Mikroorganismen. In: Gesellschaft für Biotechnologische Forschung mbH Braunschweig-Stöckheim, Conference bacterial leaching. Verlag Chemie, Weinheim/New York, pp 261–270Google Scholar
  10. Klages D, Meyer I, Schwartz W, Näveke R (1981) Untersuchungen zur Frage einer Laugung von Erzen mit heterotrophen Mikroorganismen-Entwicklung eines Screening-Verfahrens. Z Allg Mikrobiol 21:729–737Google Scholar
  11. Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev desert (Israel) an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia (Berlin) 50:25–38Google Scholar
  12. Kullmann K-H, Schwartz W (1982) Laugung von uranhaltigen Phosphoriten mit heterotrophen Mikroorganismen. Z Allg Mikrobiol 22:41–47Google Scholar
  13. Lorenz MG, Krumbein WE (1984) Large-scale determination of cyanobacterial susceptibility to antibiotics and inorganic ions. Appl Microbiol Biotechnol 20:422–426Google Scholar
  14. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  15. Lundgren DG, Silver M (1980) Ore leaching by bacteria. Ann Rev Microbiol 34:263–283Google Scholar
  16. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) Generic assignment, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  17. Rippka R, Waterbury JB, Stanier RY (1981) Isolation and purification of cyanobacteria: some general principles. In: Starr MP, Stolp H, Trüper HG, Balows A, Schlegel HG (eds) The prokaryotes. Springer, Berlin/Heidelberg/New York, pp 212–220Google Scholar
  18. Schiefer GE, Caldwell DE (1982) Synergistic interaction between Anabaena and Zoogloea spp in carbon dioxide-limited continuous cultures. Appl Environ Microbiol 44:84–87Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • Michael G. Lorenz
    • 1
  • Wolfgang E. Krumbein
    • 1
  1. 1.Geomicrobiology DivisionUniversity of OldenburgOldenburgGermany

Personalised recommendations