Advertisement

Applied Microbiology and Biotechnology

, Volume 21, Issue 6, pp 341–347 | Cite as

Albomycin: Studies on fermentation, isolation and quantitative determination

  • H. -P. Fiedler
  • F. Walz
  • A. Döhle
  • H. Zähner
Biotechnology

Summary

Streptomyces griseus TÜ 6 produces the sideromycin antibiotic albomycin δ2 in concentrations of approximately 1 mg/l. The production depends on the phosphate, iron, and ornithine concentrations in the medium. In optimized conditions, the production of albomycin could be increased to 25 mg/l in a fedbatch fermentation. Isolation and purification could be achieved by reversed-phase and size-exclusion chromatography and preparative high-performance liquid chromatography (HPLC). The detection limit in quantitative determination of albomycin by HPLC was reached at a concentration of 1 μg/ml, which was 100 times less sensitive than biological testing, but this method, although time-consuming, was more selective.

Keywords

Iron Phosphate Chromatography Purification Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anke T, Diekmann H (1974) Eibau von δ-N-hydroxy-L-Ornithin und δ-N-acyl-δ-N-hydroxy-L-Ornithin in Sideramine von Pilzen. Arch Microbiol 95:227–236Google Scholar
  2. Benz G, Schröder T, Kurz J, Wünsche C, Karl W, Steffens G, Pfitzner J, Schmidt D (1982) Constitution of the deferriform of the albomycins δ1, δ2, and ε. Angew Chem Int Ed Engl 21:527–528Google Scholar
  3. Brazhnikova MG, Mikeš O, Lomakina NN (1957) Studies on homogeneity of albomycin. Biochimija 22: 111–117Google Scholar
  4. Brinberg SL, Grinuk TI (1959) Physiological features of Actinomyces subtropicus in connection with the biosynthesis of albomycin. Antibiotiki 4:23–28Google Scholar
  5. Davis BD, Mingioli ES (1950) Mutants of Escherichia coli requiring methionine or vitamin B 12. J Bacteriol 60:17–28Google Scholar
  6. Demain AL, Kennel YM, Aharonowitz Y (1979) Carbon catabolite regulation of secondary metabolism. In: Bull AT, Ellwood DC, Ratledge C (eds) Microbial technology: current state, future prospects. Cambridge University Press, London, pp 163–185Google Scholar
  7. Drew SW, Demain AL (1977) Effect of primary metabolites on secondary metabolism. Ann Rev Microbiol 31:343–356Google Scholar
  8. Fiedler H-P, Sauerbier J (1978) Isolation and quantitative determination of siderochromes. Eur J Appl Microbiol Biotechnol 5:51–57Google Scholar
  9. Gause GF (1955) Recent studies on albomycin, a new antibiotic. Brit Med J 12:1177–1179Google Scholar
  10. Gause GF, Brazhnikova MG (1951) Die Wirkung von Albomycin gegen Bakterien. Nov Med (Moscow) 23:3–7Google Scholar
  11. Kappner M, Hasenböhler A, Zähner H (1977) Optimierung der Desferri-Ferricrocinbildung bei Aspergillus viridi-nutans Ducker & Thrower. Arch Microbiol 115:323–331Google Scholar
  12. Keller-Schierlein W, Prelog V, Zähner H (1964) Siderochrome (Natürliche Eisen-(III)-trihydroxamat-Komplexe). Fortschr Chem Org Naturst 22:279–322Google Scholar
  13. Kuenzi MT (1978) Process design and control in antibiotic fermentations. In: Hütter R, Leisinger T, Nüesch J, Wehrli W (eds) Antibiotics and other secondary metabolites. Academic Press, London New York San Francisco, pp 39–56Google Scholar
  14. Maehr H, Berger J (1969) The production, isolation and characterization of a grisein-like sideromycin complex. Biotechnol Bioeng 11:1111–1123Google Scholar
  15. Maehr H, Pitcher RG (1971) Identity of albomycin δ2 and antibiotic Ro 5-2667. J Antibiot 24:830–834Google Scholar
  16. Martin JF (1977) Control of antibiotic synthesis by phosphate. Adv Biochem Eng 6:105–127Google Scholar
  17. Martin JF, Demain AL (1980) Control of antibiotic biosynthesis. Microbiol Rev 44:230–251Google Scholar
  18. Reynolds D, Waksman SA (1948) Grisein, an antibiotic produced by certain strains of Streptomyces griseus. J Bacteriol 55:739–752Google Scholar
  19. Stapley EO, Ormond RE (1957) Similarity of albomycin and grisein. Science 125:587–589Google Scholar
  20. Turková J, Mikeš O, Šorm F (1962) Chemical composition of the antibiotic albomycin. III. Some degradation products of albomycin. Collect Czech Chem Commun 27:591Google Scholar
  21. Zähner H, Kurth R (1982) Over-production of microbial metabolites. The supply of precursors from the intermediary metabolism. In: Krumphanzl V, Sikyta B, Vanek Z (eds) Overproduction of microbial products. Academic Press, London, pp 172–179Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • H. -P. Fiedler
    • 1
  • F. Walz
    • 1
  • A. Döhle
    • 1
  • H. Zähner
    • 1
  1. 1.Institut für Biologie II, Lehrstuhl Mikrobilogie ITübingenGermany

Personalised recommendations