Archive for Rational Mechanics and Analysis

, Volume 76, Issue 4, pp 289–338 | Cite as

Large buckled states of nonlinearly elastic rods under torsion, thrust, and gravity

  • Stuart S. Antman
  • Charles S. Kenney


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. J. C. Alexander & S. S. Antman (1981), Global and local behavior of bifurcating multidimensional continua of solutions for multiparameter nonlinear eigenvalue problems, Arch. Rational Mech. Anal. 76, 339–354.Google Scholar
  2. S. S. Antman (1972), The Theory of Rods, Handbuch der Physik VIa/2, edited by C. Truesdell, Springer-Verlag, 641–703.Google Scholar
  3. S. S. Antman (1974), Kirchhoff's problem for nonlinearly elastic rods, Quart. Appl. Math. 32, 221–240.Google Scholar
  4. S. S. Antman (1976), Ordinary differential equations of one-dimensional nonlinear elasticity I: Foundations of the theories of nonlinearly elastic rods and shells, Arch. Rational Mech. Anal., 61, 307–351.Google Scholar
  5. S. S. Antman & E. R. Carbone (1977), Shear and necking instabilities in nonlinear elasticity, J. Elasticity 7, 125–151.Google Scholar
  6. S. S. Antman & K. B. Jordan (1975), Qualitative aspects of the spatial deformation of nonlinearly elastic rods, Proc. Roy. Soc. Edinburgh 73A, 85–105.Google Scholar
  7. S. S. Antman & T.-P. Liu (1979), Travelling waves in hyperelastic rods, Quart. Appl. Math. 36, 377–399.Google Scholar
  8. S. S. Antman & A. Nachman (1980), Large buckled states of rotating rods, Nonlinear Analysis, 4, 303–327.Google Scholar
  9. S. S. Antman & G. Rosenfeld (1978), Global behavior of buckled states of nonlinearly elastic rods, SIAM Rev. 20, 513–566. Corrections and additions, Ibid. 22 (1980), 186–187.Google Scholar
  10. M. Beck (1952), Die Knicklast des einseitig eingespannten tangential gedrückten Stabes, Zeitschr. Angew. Math. Phys. 3, 225–228.Google Scholar
  11. V. V. Bolotin (1961), Nonconservative Problems of the Theory of Elastic Stability (in Russian) GIFML; English translation (1963), MacMillan.Google Scholar
  12. M. Born (1906), Untersuchungen über die Stabilität der elastischen Linie in Ebene und Raum, unter verschiedenen Grenzbedingungen, Dieterich Univ.-Buchdruckerei, Göttingen.Google Scholar
  13. R. C. Browne (1979), Dynamic stability of one-dimensional viscoelastic bodies, Arch. Rational Mech. Anal. 68, 231–262.Google Scholar
  14. J. Carr & M. Z. M. Malhardeen (1981), Beck's problem, to appear.Google Scholar
  15. A. Clebsch (1862), Theorie der Elasticität fester Körper, Leipzig, Teubner.Google Scholar
  16. E. A. Coddington & N. Levinson (1955), Theory of Ordinary Differential Equations, McGraw-Hill.Google Scholar
  17. H. Cohen (1966), A nonlinear theory of elastic directed curves, Int. J. Eng. Sci. 4, 511–524.Google Scholar
  18. E. Cosserat & F. Cosserat (1907), Sur la statique de la ligne déformable, C. R. Acad. Sci. Paris 145, 1409–1412.Google Scholar
  19. E.& F. Cosserat (1909), Théorie des Corps Déformables, Hermann.Google Scholar
  20. C. N. Desilva & A. B. Whitman (1971), A thermodynamic theory of directed curves, J. Math. Phys. 12, 1603–1609.Google Scholar
  21. J. L. Ericksen & C. Truesdell (1958), Exact theory of stress and strain in rods and shells, Arch. Rational Mech. Anal. 1, 295–323.Google Scholar
  22. L. Euler (1744), Additamentum I de curvis elasticis, in Methodus inveniendi lineas curvas maximi minimivi proprietate gaudentes = Opera Omnia Ser. I Vol. 24, Füssli, 1960, 231–297.Google Scholar
  23. L. Euler (1775), De motu turbinatorio chordarum musicarum ubi simul universa theoria tam aequilibrii quam motus corporum flexibilium simulque etiam elasticorum breviter explicatur, Novi Comm. Acad. Sci. Petrop. 19, 340–370 and Opera Omnia, Ser. II, Vol. 11, Füssli, Zürich, 158–179.Google Scholar
  24. L. Euler (1780), Determinatio onerum, quae columnae gestare valent, Acta Acad. Sci. Petrop. 2, 121–145; Examen insignis paradoxi in theoria columnarum occurentis, loc. cit., 146–162; De altitudine columnarum sub proprio pondere corruentium, loc. cit., 163–193, in Opera Omnia, Ser. II, Vol. 17, Füssli, Zürich.Google Scholar
  25. R. Grammel (1923), Das kritische Drillungsmoment von Wellen, Z. angew. Math. Mech. 3, 262–271.Google Scholar
  26. A. E. Green & N. Laws (1966), A general theory of rods, Proc. Roy. Soc. London A 293, 145–155.Google Scholar
  27. A. G. Greenhill (1881), Determination of the greatest height consistent with stability that a vertical pole or mast can be made, and of the greatest height to which a tree of given proportions can grow. Proc. Camb. Phil. Soc. 4, 65–75.Google Scholar
  28. A. G. Greenhill (1883), On the strength of shafting when exposed both to torsion and to end thrust. Institution of Mechanical Engineers, Proc., 182–209.Google Scholar
  29. J. A. Haringx (1942), On the buckling and the lateral rigidity of helical compression springs, Proc. Nederl. Akad. Wet. 45, 533–539, 650–654.Google Scholar
  30. J. A. Haringx (1948–1949), On highly compressible helical springs and rubber rods, and their application for vibration-free mountings, Philips Res. Reports 3, 401–449; 4, 49–80, 206–220, 261–290, 375–400, 407–448.Google Scholar
  31. G. Herrmann (1967), Stability of equilibrium of elastic systems subjected to nonconservative forces, Appl. Mech. Rev. 20, 103–108.Google Scholar
  32. W. Hess (1884), Über die Biegung und Drillung eines unendlich dünnen elastischen Stabes, dessen eines Ende von einem Kräftepaar angegriffen wird, Math. Annalen 23, 181–212.Google Scholar
  33. W. Hess (1885), Über die Biegung und Drillung eines unendlich dünnen elastischen Stabes mit zwei gleichen Widerständen, auf dessen freies Ende eine Kraft und ein um die Hauptaxe ungleichen Widerstandes drehendes Kräftepaar einwirkt. Math. Annalen 25, 1–38.Google Scholar
  34. J. B. Keller (1960), The shape of the strongest column, Arch. Rational Mech. Anal. 5, 275–285.Google Scholar
  35. C. S. Kenney (1979), Greenhill's problem for nonlinearly elastic rods, dissertation, Univ. Maryland.Google Scholar
  36. G. Kirchhoff (1859), Über das Gleichgewicht und die Bewegung eines unendlich dünnen elastischen Stabes, J. reine angew. Math. (Crelle) 56, 285–313.Google Scholar
  37. K. Kovári (1969), Räumliche Verzweigungsprobleme des dünnen elastischen Stabes mit endlichen Verformungen, Ing. Arch. 37, 393–416. H. H. E. Leipholz, ed. (1978), Stability of Elastic Structures, Springer.Google Scholar
  38. J. L. Lions (1969), Quelques Méthodes de Résolution des Problèmes aux Limites non Linéaires, Dunod, Gauthier-Villars, Paris.Google Scholar
  39. A. E. H. Love (1892–1927), A Treatise on the Mathematical Theory of Elasticity, First edn., Cambridge Univ. Press; Fourth edn., 1927.Google Scholar
  40. R. Magnus (1976), A generalization of multiplicity and the problem of bifurcation, Proc. London Math. Soc. (3) 32, 251–278.Google Scholar
  41. J. E. Marsden & M. McCracken (1976), The Hopf Bifurcation and its Applications, Springer-Verlag.Google Scholar
  42. J. H. Michell (1890), On the stability of a bent and twisted wire, Mess. of Math. 19, 181.Google Scholar
  43. M. A. Naimark (1952), Linear Differential Operators (in Russian), English transl., 1967, Ungar.Google Scholar
  44. E. L. Nikolai (1916), On the problem of elastic lines of double curvature (in Russian), dissertation, Petrograd, reprinted in E. L. Nikolai (1955), 45–277.Google Scholar
  45. E. L. Nikolai (1928), On the stability of the straight equilibrium form of a compressed and twisted rod (in Russian), Izv. Leningr. Politekh. Inst. 31, reprinted in E. L. NikoLai (1955), 357–387.Google Scholar
  46. E. L. Nikolai (1929), On the question of the stability of a twisted rod, (in Russian), Vestnik. Prikl. Mat. i. Mekh., 1, reprinted in E. L. Nikolai (1955), 388–406.Google Scholar
  47. E. L. Nikolai (1955), Works on Mechanics, (in Russian), G.I.T.T.L.Google Scholar
  48. F. Odeh & I. Tadjbakhsh (1965), A nonlinear eigenvalue problem for rotating rods, Arch. Rational Mech. Anal. 20, 81–94.Google Scholar
  49. J. Pierce & A. P. Whitman (1980), Topological properties of the manifolds of configurations for several simple deformable bodies, Arch. Rational Mech. Anal. 74, 101–113.Google Scholar
  50. M. Potier-Ferry (1981), On the mathematical foundations of elastic stability theory, Arch. Rational Mech. Anal., to appear.Google Scholar
  51. I. Tadjbakhsh & J. B. Keller (1962), Strongest columns and isoperimetric inequalities for eigenvalues, ASME Trans. 84E (J. Appl. Mech.), 159–164.Google Scholar
  52. W. Thomson (Lord Kelvin) & P. G. Tait (1867), Treatise on Natural Philosophy, Part I; Cambridge Univ. Press; second edition, 1879.Google Scholar
  53. A. Trösch (1952), Stabilitätsprobleme bei tordierte Stäben und Wellen, Ing. Arch. 20, 258–277.Google Scholar
  54. C. Truesdell (1960), The Rational Mechanics of Flexible or Elastic Bodies 1638–1788, L. Euleri Opera Omnia II 112, Füssli, Zürich.Google Scholar
  55. C. Truesdell & W. Noll (1965), The Non-linear Field Theories of Mechanics, Handbuch der Physik III/3, Springer-Verlag.Google Scholar
  56. C. Truesdell & R. A. Toupin (1960), The Classical Field Theories, Handbuch der Physik, III/1, Springer-Verlag.Google Scholar
  57. M. M. Vainberg (1956), Variational Methods for the Study of Nonlinear Operators (in Russian), Gostekhteorizdat, English transl. (1964), Holden-Day.Google Scholar
  58. H. Weyl (1949), Philosophy of Mathematics and Natural Science, Princeton Univ. Press.Google Scholar
  59. A. B. Whitman & C. N. Desilva (1974), An exact solution in a nonlinear theory of rods, J. Elast. 4, 265–280.Google Scholar
  60. D. W. Zachmann (1979), Nonlinear analysis of a twisted axially loaded elastic rod, Quart. Appl. Math. 37, 67–72.Google Scholar
  61. H. Ziegler (1951), Stabilitätsprobleme bei geraden Stäben und Wellen, Zeitschr. Angew. Math. Phys. 2, 265–289.Google Scholar
  62. H. Ziegler (1968), Principles of Structural Stability, First ed., Ginn; Second ed. (1977), Birkhäuser.Google Scholar
  63. M. Życzkowski (1978), Part III of Leipholz (1978).Google Scholar

Copyright information

© Springer-Verlag GmbH & Co. KG 1981

Authors and Affiliations

  • Stuart S. Antman
    • 1
    • 2
  • Charles S. Kenney
    • 1
    • 2
  1. 1.Department of Mathematics and Institute for Physical Science & TechnologyUniversity of MarylandUSA
  2. 2.Department of MathematicsCalifornia State CollegeBakersfield

Personalised recommendations