Experimental Brain Research

, Volume 75, Issue 3, pp 639–643 | Cite as

Short latency somaesthetic responses in motor cortex, transmitted through the spino-thalamic system, in the cat

  • J. L. Relova
  • Y. Padel
Article

Summary

Evidence is presented that in the cat, the spinothalamic system contributes to short latency somaesthetic responses in motor cortex efferent cells. Intracellular recordings performed on identified pyramidal tract cells and corticospinal cells show that these cells are still activated and/or inhibited from the periphery after a set of central nervous lesions leaving intact only the ventral half of the spinal cord. The responses were attributed to the spinothalamic system. The ascending system is activated through collaterals of afferent fibres running in the dorsal columns of the spinal cord. This peripheral link to the motor cortex might participate in updating the motor command on the basis of information feedback from the periphery.

Key words

Motor cortex Somaesthetic responses Spinothalamic system Intracellular recording Cat 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adrian ED, Moruzzi G (1939) Impulses in the pyramidal tract. J Physiol (Lond) 97: 153–199Google Scholar
  2. Albe-Fessard D, Liebeskind J (1966) Origine des messages somato-sensitifs activant les cellules du cortex moteur chez le singe. Exp Brain Res 1: 127–146Google Scholar
  3. Andersson SA, Kallström Y (1971) A closed chamber for microelectrode recording from the brain. Acta Physiol 82: 3–4AGoogle Scholar
  4. Asanuma H (1981) Functional role of sensory inputs to the motor cortex. Prog Neurobiol 16: 211–262Google Scholar
  5. Asanuma H, Arissian K (1982) Motor deficit following interruption of sensory inputs to the motor cortex of the monkey. In: Buser PA, Cobb WA, Okuma T (eds) Kyoto symposia. EEK [Suppl 36]. Elsevier, Amsterdam New YorkGoogle Scholar
  6. Asanuma H, Larsen KP, Zarzecki P (1979) Peripheral input pathways projecting to the motor cortex in the cat. Brain Res 172: 197–208Google Scholar
  7. Brinkman J, Bush BM, Porter R (1978) Deficient influences of peripheral stimuli on precentral neurons in monkey with dorsal column lesions. J Physiol (Lond) 276: 27–48Google Scholar
  8. Brooks VB, Rudomin P, Slayman CL (1961) Sensory activation of neurons in the cat's cerebral cortex. J Neurophysiol 24: 286–301Google Scholar
  9. Buser P, Ascher P (1960) Mise en jeu réflexe du système pyramidal chez le chat. Arch Ital Biol 98: 123–164Google Scholar
  10. Devanandan MS, Heath PD (1975) A short latency pathway from forearm nerves to area 4 of the baboon's cerebral cortex. J Physiol (Lond) 248: 43–44PGoogle Scholar
  11. Evarts EV, Fromm C (1977) Sensory responses in motor cortex during precise motor control. Neurosci Lett 5: 267–272Google Scholar
  12. Greenan TJ, Strick PL (1986) Do thalamic regions which project to rostral primate motor cortex receive spinothalamic input? Brain Res 362: 384–388Google Scholar
  13. Hassler R, Muhs-Clement K (1964) Architektonischer Aufbau des sensorimotorischen und parietalen Cortex der Katze. J Hirnforsch 6: 377–420Google Scholar
  14. Itoh K, Mizuno N (1977) Topographical arrangement of thalamocortical neurons in the centrolateral nucleus (CL) of the cat, with special reference to a spino-thalamo-motor cortical path through the CL. Exp Brain Res 30: 471–480Google Scholar
  15. Lemon RN, Porter R (1976) Afferent input to movement-related precentral neurons in conscious monkeys. Proc R Soc Lond 194: 313–339 [Biol]Google Scholar
  16. Malis LI, Pribaum KH, Kruger L (1953) Action potentials in motor cortex evoked by peripheral nerve stimulation. J Neurophysiol 16: 161–167Google Scholar
  17. Molinari M, Bentivoglio M, Minciacchi D, Granato A, Macchi G (1986) Spinal afferents and cortical efferents of the anterior intralaminar nuclei, an anterograde-retrograde tracing study. Neurosci Lett 72: 258–264Google Scholar
  18. Murphy JT, Wong YC, Kwan HC (1975) Afferent-efferent linkages in motor cortex for single forelimb muscles. J Neurophysiol 38: 990–1014Google Scholar
  19. Oscarsson O, Rosen I (1964) Exteroceptive and proprioceptive projections to the pericruciate cortex in the cat. J Physiol (Lond) 172: 28–29PGoogle Scholar
  20. Oswaldo-Cruz E, Tsoulaze S (1957) Activité évoquée par stimulation de nerfs d'origine musculaire ou cutanée, dans le gyrus sigmoïde antérieur du chat. J Physiol (Paris) 49: 327–329Google Scholar
  21. Padel Y, Relova JL (1987) A pathway mediating somaesthetic projections to the motor cortex in the cat. Soc Neurosci Abstr 13: 672Google Scholar
  22. Palmer CI, Massion J, Dufosse M (1986) The responses of pericruciate cortical neurones to distal forepaw electrical stimulation in the unanesthetized, unrestrained cat. Exp Brain Res 63: 474–486Google Scholar
  23. Ramon Y, Cajal S (1909) Histologie du système nerveux de l'homme et des vertébrés. Maloine, ParisGoogle Scholar
  24. Rosen I, Asanuma H (1972) Peripheral afferent inputs to the forelimb area of the monkey motor cortex: input output relations. Exp Brain Res 14: 257–273Google Scholar
  25. Sakata H, Miyamoto J (1968) Topographic relationship between the receptive fields of neurons in the motor cortex and the movements elicited by focal stimulation in freely moving cats. Jpn J Physiol 18: 489–507Google Scholar
  26. Strick PL, Preston JB (1978) Sorting of somatosensory afferent information in primate motor cortex. Brain Res 156: 364–368Google Scholar
  27. Towe AL, Patton HD, Kennedy T (1964) Response properties of neurons in the pericruciate cortex of the cat following electrical stimulation of the appendages. Exp Neurol 10: 325–344Google Scholar
  28. Tsukahara N, Fuller DRG, Brooks VB (1968) Collateral pyramidal influences on the corticorubrospinal system. J Neurophysiol 3: 467–484Google Scholar
  29. Wiesendanger M (1973) Input from muscle and cutaneous nerves of the hand and forearm to neurones of the precentral gyrus of baboons and monkeys. J Physiol (Lond) 228: 203–219Google Scholar
  30. Willis SD, Coggeshall RE (1978) Sensory mechanisms of the spinal cord. Plenum Press, New York, 485 pGoogle Scholar
  31. Woolsey CN (1958) Organisation of somatic, sensory and motor areas of the cerebral cortex. In: Harlow HF, Woolsey CN (eds) Biological and biochemical basis of behavior. The University of Wisconsin Press, Madison, pp 63–81Google Scholar
  32. Woolsey CN, Marshall WH, Bard P (1942) Representation of cutaneous tactile sensibility in the cerebral cortex of the monkey as indicated by evoked potentials. Johns Hopkins Hosp Bull 70: 399–341Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • J. L. Relova
    • 1
  • Y. Padel
    • 1
  1. 1.Equipe “Mécanismes Sensori-Moteurs”, LNF 3, CNRSMarseilleFrance
  2. 2.Departamento de FisiologiaUniversitad de Santiago, Facultad de MedicinaE - Santiago de CompostellaSpain

Personalised recommendations