Archive for Rational Mechanics and Analysis

, Volume 72, Issue 2, pp 175–201 | Cite as

A nonlinear theory of elastic materials with voids

  • Jace W. Nunziato
  • Stephen C. Cowin


Neural Network Complex System Nonlinear Dynamics Electromagnetism Elastic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Goodman, M. A., & S. C. Cowin, “A Continuum Theory for Granular Materials,” Arch. Rational Mech. Anal. 44 (1972), 249–266.Google Scholar
  2. 2.
    Nunziato, J. W., & E. K. Walsh, “On the Influence of Void Compaction and Material Non-Uniformity on the Propagation of One-Dimensional Acceleration Waves in Granular Materials,” Arch. Rational Mech. Anal. 64 (1977), 299–316; Addendum, ibid., 67 (1978), 395–398.Google Scholar
  3. 3.
    Knowles, J. K., & M. T. Jakub, “Finite Dynamic Deformations of an Incompressible Elastic Medium Containing a Spherical Cavity,” Arch. Rational Mech. Anal. 18 (1965), 367–378.Google Scholar
  4. 4.
    Cowin, S. C., & F. Leslie, “On Kinetic Energy and Momenta in Cesserat Continua,” ZAMP (1979), to be published.Google Scholar
  5. 5.
    Band, W., “Local Heating in Shocked Granular Materials,” Stanford Research Institute Internal Report 002-67, July 1967.Google Scholar
  6. 6.
    Krizek, R. J., “Rheological Behavior of Cohesionless Soils Subjected to Dynamic Loads,” Trans. Soc. Rheol. 15 (1971), 491–540.Google Scholar
  7. 7.
    Butcher, B. M., “The Description of Strain-Rate Effects in Shocked Porous Materials,” Shock Waves and the Mechanical Properties of Solids, Syracuse University Press, 1971.Google Scholar
  8. 8.
    Romano, M., “A Continuum Theory for Granular Media with a Critical State,” Arch. Mech. Stos. 26 (1974), 1011–1028.Google Scholar
  9. 9.
    Davis, R. O., “Undrained Simple Shearing of Rate Type Granular Medium,” Proc., Joint U.S.-Japan Seminar on the Continuum Mechanical and Statistical Approaches in the Mechanics of Granular Materials, Sendai, Japan, 1978.Google Scholar
  10. 10.
    Mullenger, G., “A Condition for a Continuum Model of Granular Structure,” ibid. Google Scholar
  11. 11.
    Coleman, B. D., “Thermodynamics of Materials with Memory,” Arch. Rational Mech. Anal. 17 (1964), 1–46.Google Scholar
  12. 12.
    Nunziato, J. W., & E. K. Walsh, “Small-Amplitude Wave Behavior in One-Dimensional Granular Solids,” J. Appl. Mech. 44 (1977), 559–564.Google Scholar
  13. 13.
    Coleman, B. D., & M. E. Gurtin, “Waves in Materials with Memory, IV,” Arch. Rational Mech. Anal. 19 (1965), 317–338.Google Scholar
  14. 14.
    Atkin, R. J., S. C. Cowin, & N. Fox, “On Boundary Conditions for Polar Materials,” ZAMP 28 (1977), 1017–1026.Google Scholar
  15. 15.
    Protter, M. H., & H. F. Weinberger, Maximum Principles in Differential Equations, Prentice-Hall, 1967.Google Scholar
  16. 16.
    Wang, C. C., & C. Truesdell, Introduction to Rational Elasticity, Noordhoff, 1973.Google Scholar
  17. 17.
    Truesdell, C., & R. A. Toupin, “The Classical Field Theories,” Handbuch der Physik, III/1, Springer, 1960.Google Scholar
  18. 18.
    Gurtin, M. E., “The Linear Theory of Elasticity,” Handbuch der Physik, VIa/2, Springer, 1972.Google Scholar
  19. 19.
    Chen, P. J., ‘Growth and Decay of Waves in Solids,” Handbuch der Physik, VIa/3, Springer, 1973.Google Scholar
  20. 20.
    Cowin, S. C., “Thermodynamic Model for Porous Materials with Vacuous Pores,” J. Appl. Phys. 43 (1972), 2495–2497.Google Scholar
  21. 21.
    Mindlin, R. D., “Microstructure in Linear Elasticity,” Arch. Rational Mech. Anal. 16 (1964), 51–78.Google Scholar
  22. 22.
    Toupin, R. A., “Theories of Elasticity with Couple Stress,” Arch. Rational Mech. Anal. 17 (1964), 85–112Google Scholar
  23. 23.
    Love, A. E. H., A Treatise on the Mathematical Theory of Elasticity, Cambridge, 1927.Google Scholar
  24. 24.
    Eshelby, J. D., “The Force on an Elastic Singularity,” Phil. Trans. Roy. Soc. A244 (1951), 87–112.Google Scholar
  25. 25.
    MacKenzie, J. K., “The Elastic Constants of a Solid Containing Spherical Holes,” Proc. Phys. Soc. B63 (1950), 2–11.Google Scholar
  26. 26.
    Carroll, M. M., & A. C. Holt, “Static and Dynamic Pore-Collapse Relations for Ductile Porous Materials,” J. Appl. Phys. 43 (1972), 1626–1636.Google Scholar
  27. 27.
    Jenkins, J. T., “Static Equilibrium of Granular Materials,” J. Appl. Mech. 42 (1975), 603–606.Google Scholar
  28. 28.
    Truesdell, C., & W. Noll, “The Non-Linear Field Theories of Mechanics,” Handbuch der Physik III/3, Springer, 1965.Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Jace W. Nunziato
    • 1
    • 2
  • Stephen C. Cowin
    • 1
    • 2
  1. 1.Sandia LaboratoriesAlbuquerque
  2. 2.Tulane UniversityNew Orleans

Personalised recommendations