Archives of Microbiology

, Volume 154, Issue 1, pp 23–30 | Cite as

Desulfomonile tiedjei gen. nov. and sp. nov., a novel anaerobic, dehalogenating, sulfate-reducing bacterium

  • Kim A. DeWeerd
  • Linda Mandelco
  • Ralph S. Tanner
  • Carl R. Woese
  • Joseph M. Suflita
Original Papers

Abstract

An anaerobic, dehalogenating, sulfate-reducing bacterium, strain DCB-1, is described and nutritionally characterized. The bacterium is a Gram-negative, nonmotile, non-sporeforming large rod with an unusual morphological feature which resembles a collar. The microorganism reductively dehalogenates meta substituted halobenzoates and also reduces sulfate, sulfite and thiosulfate as electron acceptors. The bacterium requires nicotinamide, 1,4-naphthoquinone and thiamine for optimal growth in a defined medium. The microorganism can grow autotrophically on H2:CO2 with sulfate or thiosulfate as terminal electron acceptors. It can also grow heterotrophically with pyruvate, several methoxybenzoates, formate plus sulfate or benzoate plus sulfate. It ferments pyruvate to acetate and lactate in the absence of other electron acceptors. The bacterium is inhibited by MoOinf4sup2-or SeOinf4sup2-as well as tetracycline, chloramphenicol, kanamycin or streptomycin. Cytochrome c3 and desulfoviridin have been purified from cells grown in defined medium. 16S rRNA sequence analysis indicates the organism is a new genus of sulfate-reducing bacteria in the delta subdivision of the class Proteobacteria. We propose that the strain be named Desulfomonile tiedjei.

Key words

Desulfomonile Sulfate-reducing bacteria Dehalogenation 

Non-standard abbreviations

PIPES

piperazine-N,N′-bis[2-ethanesulfonic acid]

MES

2-[N-morpholino]ethanesulfonic acid

TES

N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid

HQNO

2-N-heptyl-4-hydroxy-quinoline-N-oxide

CCCP

carbonyl-cyanide-m-chlorophenylhydrazine

CM

carboxymethyl

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balch WE, Wolfe RS (1976) New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32: 781–791Google Scholar
  2. Beeman RE, Suflita JM (1987) Microbial ecology of a shallow unconfined ground water aquifer polluted by municipal landfill leachate. Microb Ecol 14: 39–54Google Scholar
  3. Biebl H, Pfennig N (1977) Growth of sulfate-reducing bacteria with sulfur as electron acceptor. Arch Microbiol 112: 115–117Google Scholar
  4. Bryant MP, Robinson IM (1962) Some nutritional characteristics of predominant culturable ruminal bacteria. J Bacteriol 84: 605–614Google Scholar
  5. Caldwell DR, White DC, Bryant MP, Doetsch RN (1965) Specificity of the heme requirement for growth of Bacteroides ruminicola. J Bacteriol 90: 1645–1654Google Scholar
  6. Collins MD, Widdel F (1986) Respiratory quinones of sulfate-reducing and sulfur-reducing bacteria: A systematic investigation. Syst Appl Microbiol 8: 8–18Google Scholar
  7. DeSoete G (1983) A least squares algorithm for fitting additive trees to proximaty data. Psychometrika 48: 621–626Google Scholar
  8. DeWeerd KA, Suflita JM, Linkfield TG, Tiedje JM, Pritchard PH (1986) The relationship between reductive dehalogenation and other aryl substitutent removal reactions catalyzed by anaerobes. FEMS Microbiol Ecol 38: 331–339Google Scholar
  9. DeWeerd KA, Saxena A, Nagle DPJr, Suflita JM (1988) Metabolism of the 18O-methoxybenzoic substituent of 3-methoxybenzoic acid and other unlabelled methoxybenzoic acids by anacrobic bacteria. Appl Environ Microbiol 54: 1237–1242Google Scholar
  10. Dolfing J, Tiedje JM (1986) Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS Microbiol Ecol 38: 293–298Google Scholar
  11. Dolfing J, Tiedje JM (1987) Growth yield increase to reductive dechlorination in a defined 3-chlorobenzoate degrading methanogenic coculture. Arch Microbiol 149: 102–105Google Scholar
  12. Fathepure BZ, Nengu JP, Boyd SA (1987) Anaerobic bacteria that dechlorinate perchloroethylene. Appl Environ Microbiol 53: 2671–2674Google Scholar
  13. Fogo JK, Popowsky M (1949) Spectrophotometric determination of hydrogen sulfide. Anal Chem 21: 732–734Google Scholar
  14. Gomez-alarcon RA, O'Dowd C, Leedle JAZ, Bryant MP (1982) 1,4-Naphthoquinone and other nutrient requirements of Succinivibrio dextrinosolvens. Appl Environ Microbiol 44: 346–350Google Scholar
  15. Green CJ, Stewart GC, Hollis MA, Vold BS, Bott KF (1985) Nucleotide sequence of the Bacillus subtilis ribosomal RNA operon, rrnB. Gene 37: 261–266Google Scholar
  16. Herron JS, King JD, White DC (1978) Recovery of polyhydroxybutyrate from estuarine microflora. Appl Environ Microbiol 35: 251–257Google Scholar
  17. Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism vol III. Academic Press, New York, pp 21–132Google Scholar
  18. Lane DJ, Pace B, Olson GJ, Stahl DA, Sogin ML, Pace NR (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analysis. Proc Natl Acad Sci USA 82: 6955–6959Google Scholar
  19. Law JH, Slepecky RA (1961) Assay of poly-hydroxybutyrate. J Bacteriol 82: 33–36Google Scholar
  20. Lee JP, Peck HJr (1971) Purification of the enzyme reducing bisulfite to trithionate from Desulfovibrio gigas and its identification as desulfoviridin. Biochem Biophys Res Commun 45: 583–589Google Scholar
  21. Linkfield TG, Tiedje JM (1990) Characterization of the requirements and substrates for reductive dehalogenation by strain DCB-1. J Ind Microbiol 5: 9–15Google Scholar
  22. Liu MC, Costa C, Coutinho IB, Moura JJG, Moura I, Xavier AV, LeGall J (1988) Cytochrome components of nitrate-and sulfate-respring Desulfovibrio desulfuricans ATCC 27774. J Bacteriol 170: 5545–5551Google Scholar
  23. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. J Cell Biol 66: 198–200Google Scholar
  24. Oyaizu H, Debrunner-Vossbrinck B, Mandelco L, Studier JA, Woese CR (1987) The green non-sulfur bacteia: a deep branching in the eubacterial line of descent. Syst Appl Microbiol 9: 47–53Google Scholar
  25. Oyaizu H, Woese CR (1985) Phylogenetic relationships among the sulfate respiring bacteria, myxobacteria and purple bacteria. Syst Appl Microbiol 6: 257–263Google Scholar
  26. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110: 3–12Google Scholar
  27. Postgate JR (1956) Cytochrome c3 and desulphoviridin; Pigments of the anaerobe Desulphovibrio desulphuricans. J Gen Microbiol 14: 545–572Google Scholar
  28. Shelton DR, Tiedje JM (1984) Isolation and partial characterzation of bacteria in an anerobic consortium that mineralizes 3-chlorobenzoate acid. Appl Environ Microbiol 48: 840–848Google Scholar
  29. Smibert RM, Krieg NR (1981) Systematics. In: Gerhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Philips GB (eds) Manual of methods for general bacteriology. American Society for Microbiology, Washington, DC, pp 409–443Google Scholar
  30. Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olsen BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150: 76–85Google Scholar
  31. Stackebrandt E, Murray RGE, Truper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int J Syst Bacteriol 38: 321–325Google Scholar
  32. Stevens TO, Linkfield TG, Tiedje JM (1988) Physiological characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl Environ Microbiol 54: 2938–2943Google Scholar
  33. Stevens TO, Tiedje JM (1988) Carbon dioxide fixation and mixotrophic metabolism by strain DCB-1, a dehalogenating anaerobic bacterium. Appl Environ Microbiol 54: 2944–2948Google Scholar
  34. Suflita JM, Horowitz A, Shelton DR, Tiedje JM (1982) Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 218: 1115–1117Google Scholar
  35. Suflita JM, Robinson JA, Tiedje JM (1983) Kinetics of microbial dehalogenation of haloaromatic substrates in methanogenic environments. Appl Environ Microbiol 45: 1466–1473Google Scholar
  36. Suflita JM, Gibson SA, Beeman RE (1988) Anaerobic biotransformations of pollutant chemicals in aquifers. J Ind Microbiol 3: 179–194Google Scholar
  37. Tanner RS (1989) Monitoring sulfate-reducing bacteria: comparison of enumeration media. J Microbiol Methods 10: 83–90Google Scholar
  38. Weber K, Osborn M (1969) The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem 244: 4406–4412Google Scholar
  39. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder AJB (ed) Biology of anaerobic microorganisms. John Wiley and Sons, New York, pp 469–585Google Scholar
  40. Widdel F, Pfennig N (1981) Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 1. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129: 395–400Google Scholar
  41. Woese CR (1987) Bacterial evolution. Microbiol Rev 51: 221–271Google Scholar
  42. Wolin EA, Wolin MJ, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238: 2882–2886Google Scholar
  43. Yang D, Oyaizu H, Olsen GJ, Woese CR (1985) Mitochondrial origins. Proc Natl Acad Sci USA 82: 4443–4447.Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Kim A. DeWeerd
    • 1
  • Linda Mandelco
    • 2
  • Ralph S. Tanner
    • 1
  • Carl R. Woese
    • 2
  • Joseph M. Suflita
    • 1
  1. 1.Department of Botany and MicrobiologyUniversity of OklahomaNormanUSA
  2. 2.Department of MicrobiologyUniversity of IllinoisUrbanaUSA

Personalised recommendations