Advertisement

Archives of Microbiology

, Volume 156, Issue 3, pp 218–222 | Cite as

Metabolization of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134

  • Dietmar Helmut Pieper
  • Andrea Elisabeth Kuhm
  • Karin Stadler-Fritzsche
  • Peter Fischer
  • Hans-Joachim Knackmuss
Original Papers

Abstract

2,4-Dichloro-cis,cis-muconate is established as ringcleavage product in the degradation of 3,5-dichlorocatechol by Alcaligenes eutrophus JMP 134. The formerly described isomerization of 2-chloro-trans- to 2-chlorocis-4-carboxymethylenebut-2-en-4-olide as an essential catabolic step could not be certified.

Key words

3,5-Dichlorocatechol 2,4-Dichloromuconate Dichloromuconate cycloisomerase 2-Chloro-4-carboxymethylenebut-2-en-4-olide Alcaligenes eutrophus JMP 134 Pseudomonas sp. B 13 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beadle CA, Smith ARW (1982) The purification and properties of 2,4-dichlorophenol hydroxylase from a strain of Acinetobacter species. Eur J Biochem 123:323–332CrossRefGoogle Scholar
  2. Bollag J-M, Briggs GG, Dawson JE, Alexander M (1968) 2,4-D metabolism. Enzymatic degradation of chlorocatechols. J Agr Food Chem 16:829–833CrossRefGoogle Scholar
  3. Chatterjee DK, Kellogg ST, Hamada S, Chakrabarty AM (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho-pathway. J Bacteriol 146:639–646PubMedPubMedCentralGoogle Scholar
  4. DeBoer TJ, Backer HJ (1954) A new method for the preparation of diazomethane. Rec Trav Chim 73:229–234CrossRefGoogle Scholar
  5. Don RH, Weightman AJ, Knackmuss HJ, Timmis KN (1985) Transposon mutagenesis and cloning analysis of the pathways for the degradation of 2,4-dichlorophenoxyacetic acid and 3-chlorobenzoate in Alcaligenes eutrophus JMP 134 (pJP4). J Bacteriol 161:85–96PubMedPubMedCentralGoogle Scholar
  6. Dorn E, Knackmuss HJ (1978a) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown Pseudomonad. Biochem J 174:73–84CrossRefGoogle Scholar
  7. Dorn E, Knackmuss HJ (1987b) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on the 1,2-dioxygenation of catechol. Biochem J 174:85–94CrossRefGoogle Scholar
  8. Dorn E, Hellwig M, Reineke W, Knackmuss HJ (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol 99:61–70CrossRefGoogle Scholar
  9. Evans WC, Smith BSW, Fernley HN, Davies JI (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem J 122: 543–551CrossRefGoogle Scholar
  10. Haigler BE, Nishino SF, Spain JC (1988) Degradation of 1,2-dichlorobenzene by a Pseudomonas sp. Appl Environ Microbiol 54:294–301PubMedPubMedCentralGoogle Scholar
  11. Kalinowski HO, Berger S, Braun S (1984) 13C-NMR-Spektroskopie. Thieme, Stuttgart New York, p 470Google Scholar
  12. Kuhm AE, Schlömann M, Knackmuss HJ, Pieper DH (1990) Purification and characterization of dichloromuconate cycloisomerase from Alcaligenes eutrophus JMP 134. Biochem J 266:877–883PubMedPubMedCentralGoogle Scholar
  13. Pemberton JM, Corney B, Don RH (1979) Evolution and spread of pesticide degrading ability among soil micro-organisms. In: Timmis KN, Pühler A (eds) Plasmids of medical, environmental and commercial improtance. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 287–299Google Scholar
  14. Pieper DH, Reineke W, Engesser KH, Knackmuss HJ (1988) Metabolism of 2,4-dichlorophenoxyacetic acid 4-chloro-2-methylphenoxyacetic acid and 2-methylphenoxyacetic acid by Alcaligenes eutrophus JMP 134. Arch Microbiol 150:95–102CrossRefGoogle Scholar
  15. Perkins EJ, Gordon MP, Caceres O, Lurquin PF (1990) Organization and sequence analysis of the dichlorophenol hydroxylase and dichlorocatechol oxidative operons of plasmid pJP4. J Bacteriol 172:2351–2359CrossRefGoogle Scholar
  16. Reineke W, Knackmuss HJ (1984) Microbial metabolism of haloaromatics. Isolation and properties of a chlorobenzenedegrading bacterium. Appl Environ Microbiol 47:395–402PubMedPubMedCentralGoogle Scholar
  17. Schmidt E, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem J 192:339–347CrossRefGoogle Scholar
  18. Schmidt E, Remberg G, Knackmuss HJ (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem J 192:331–337CrossRefGoogle Scholar
  19. Schraa G, Boone ML, Jetten MSM, van Neerven ARW, Colberg PJ, Zehnder AJB (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl Environ Microbiol 52:1374–1381PubMedPubMedCentralGoogle Scholar
  20. Schwien U, Schmidt E, Knackmuss HJ, Reineke W (1988) Degradation of chlorosubstituted aromatic compounds by Pseudomonas sp. strain B 13: fate of 3,5-dichlorocatechol. Arch Microbiol 150:78–84CrossRefGoogle Scholar
  21. Sistrom WR, Stanier RY (1954) The mechanism of formation of β-ketoadipic acid by bacteria. J Biol Chem 210:821–836PubMedGoogle Scholar
  22. Tiedje JM, Duxbury JM, Alexander M, Dawson JE (1969) 2,4-D metabolism: pathway of degradation of chlorocatechols by Arthrobacter sp. J Agr Food Chem 17:1021–1026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Dietmar Helmut Pieper
    • 1
  • Andrea Elisabeth Kuhm
    • 1
  • Karin Stadler-Fritzsche
    • 1
  • Peter Fischer
    • 2
  • Hans-Joachim Knackmuss
    • 1
  1. 1.Institut für Mikrobiologie der Universität StuttgartStuttgart 1Germany
  2. 2.Institut für Organische Chemie der Universität StuttgartStuttgart 1Germany

Personalised recommendations