Archives of Microbiology

, Volume 156, Issue 3, pp 181–185 | Cite as

Influence of an S-layer on surface properties of Bacillus stearothermophilus

  • Karin Gruber
  • Uwe B. Sleytr
Original Papers


Various aspects of surface properties of the S-layer-carrying Bacillus stearothermophilus PV72 and of an S-layer-deficient mutant (strain PV72/T5) have been tested by adsorption assays on solid surfaces, electrostatic interaction chromatography and hydrophobic interaction chromatography. The adsorption assays have shown that cell adhesion of the S-layer-carrying strain was less influenced by environmental changes than it was with the S-layer-deficient mutant. Electrostatic interaction chromatography indicated that both strains have positively and negatively charged groups exposed on the cell surface but the S-layer-carrying strain reveals more positively charged groups than does the S-layer-deficient mutant. Hydrophobic interaction chromatography showed that both strains have a hydrophilic surface but that the hydrophilic properties are more pronounced with the strain lacking an S-layer.

Key words

Bacterial cell wall S-layer Surface charge Surface hydrophobicity Bacterial adsorption Bacillus stearothermophilus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baumeister W, Wildhaber I, Engelhardt H (1988) Bacterial surface proteins. Biophys Chem 29:39–49CrossRefGoogle Scholar
  2. Bell CR, Albright LJ (1982) Attached and free floating bacteria in a diverse selection of water bodies. Appl Environ Microbiol 43:1227–1237PubMedPubMedCentralGoogle Scholar
  3. Beveridge TJ (1981) Ultrastructure, chemistry and function of the bacterial cell wall. Int Rev Cytol 72:229–317CrossRefGoogle Scholar
  4. Daniels SL (1972) The adsorption of micro-organisms onto solid surfaces. Dev Ind Microbiol 13:211–225Google Scholar
  5. Daniels SL (1980) Mechanisms involved in sorption of microorganisms to solid surfaces. In: Bitton G, Marshall KC (eds) Adsorption of microorganisms to surface. Wiley, New York, pp 7–59Google Scholar
  6. Dawson MP, Humphrey BA, Marshall KC (1981) Adhesion: a tactic in the survival strategy of a marine vibro during starvation. Curr Microbiol 6:195–199CrossRefGoogle Scholar
  7. Feldner J, Bredt W, Razin S (1979) Adherence of Mycoplasma pneumoniae to glass surfaces. Infect Immun 26:70–75PubMedPubMedCentralGoogle Scholar
  8. Feldner J, Bredt W, Kahane I (1982) Influence of cell shape and surface charge on attachment of Mycoplasma pneumoniae to glass surfaces. J Bacteriol 153:1–5Google Scholar
  9. Hovmöller S, Sjögren A, Wang DN (1988) The structure of crystalline bacterial surface layers. Prog Biophys Mol Biol 51:131–163CrossRefGoogle Scholar
  10. Johnson P, Wadström T (1983) High surface hydrophobicity of Staphylococcus aureus as revealed by hydrophobic interaction chromatography. Curr Microbiol 8:347–353CrossRefGoogle Scholar
  11. Kirchman D, Mitchell R (1982) Contribution of particle-bound bacteria to total microheterotrophic activity in five ponds and two marshes. Appl Environ Microbiol 43:200–209PubMedPubMedCentralGoogle Scholar
  12. Kjelleberg S, Humphrey BA, Marshall KC (1982) Effect of interfaces on small, starved marine bacteria. Appl Environ Microbiol 43:1166–1172PubMedPubMedCentralGoogle Scholar
  13. Koval SF (1988) Paracrystalline protein surface arrays on bacteria. Can J Microbiol 34:407–414CrossRefGoogle Scholar
  14. Labischinsky H, Barnickel G, Naumann D (1983) The state of order of bacterial peptidoglycan. In: Hakenbeck R, Höltje JV, Labischinsky H. (eds) The target of penicillin. Walter de Gruyter & Co, Berlin New York, pp 49–54CrossRefGoogle Scholar
  15. Mazia D, Schatten G, Sale W (1975) Adhesion of cells to surfaces coated with polylysine. J Cell Biol 66:198–200CrossRefGoogle Scholar
  16. Messner P, Sleytr UB (1991) The use of freeze-etching and freeze-drying to evaluate crystalline cell surface layers (S-layers). In: Mozes N, Rouxhet PG, Busscher HJ, Handley PS (eds) Analysis of microbial surfaces: methodology and applications. VCH Publishers, New York, pp 110–125Google Scholar
  17. Messner P, Hollaus F, Sleytr UB (1984) Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J System Bacteriol 34:202–210CrossRefGoogle Scholar
  18. Messner P, Bock K, Christian R, Schulz G, Sleytr UB (1990) Characterization of the surface layer glycoprotein of Clostridium symbiosum HB25. J Bacteriol 172:2576–2583CrossRefGoogle Scholar
  19. Olsson J, Westergren G (1982) Hydrophobic surface properties of oral Streptococci. FEMS Microbiol Lett 21:233–237Google Scholar
  20. Parker ND, Munn CB (1984) Increased cell surface hydrophobicity associated with possession of an additional surface protein by Aeromonas salmonicida. FEMS Microbiol Lett 21:233–237CrossRefGoogle Scholar
  21. Plohberger R, Sleytr UB (1980) Characterization of regular arrays of macromolecules on cell walls of thermophilic Bacilli. Proc 7th Europ Congr Electr Microsc, The Hague 3:608–609Google Scholar
  22. Pum D, Sára M, Sleytr UB (1989) Structure, surface charge, and self-assembly of the S-layer lattice from Bacillus coagulans E 38–66. J Bacteriol 171:5296–5303CrossRefGoogle Scholar
  23. Rutter PR, Abbott A (1978) A study of the interaction between oral Streptococci and hard surfaces. J Gen Microbiol 105:219–226CrossRefGoogle Scholar
  24. Sára M, Sleytr UB (1987 a) Charge distribution on the S-layer of Bacillus stearothermophilus and its role for morphogenesis and function. J Bacteriol 169:2804–2809CrossRefGoogle Scholar
  25. Sára M, Sleytr UB (1987 b) Molecular sieving through S-layers of Bacillus stearothermophilus strains. J Bacteriol 169:4092–4098CrossRefGoogle Scholar
  26. Sára M, Kalsner I, Sleytr UB (1988) Surface properties from the S-layer of Clostridium thermosaccharolyticum D120–70 and Clostridium thermohydrosulfuricum L 111–2–69. Arch Microbiol 149:527–533CrossRefGoogle Scholar
  27. Simon M (1985) Specific uptake rates of amino acids by attached and free living bacteria in a mesotrophic lake. Appl Environ Microbiol 49:1254–1259PubMedPubMedCentralGoogle Scholar
  28. Sleytr UB (1978) Regular arrays of macromolecules on bacterial cell walls: structure, chemistry, assembly and function. Int Rev Cytol 53:1–64CrossRefGoogle Scholar
  29. Sleytr UB, Messner P (1983) Crystalline surface layers on bacteria. Ann Rev Microbiol 37:311–339CrossRefGoogle Scholar
  30. Sleytr UB, Messner P (1988) Crystalline surface layers in procaryotes. J Bacteriol 170:2891–2897CrossRefGoogle Scholar
  31. Sleytr UB, Messner P, Pum D, Sára M (eds) (1988) Crystalline Bacterial Cell Surface Layers. Springer, Berlin Heidelberg New YorkGoogle Scholar
  32. Smit J (1987) Protein surface layers of bacteria. In: Inouye M (ed) Bacterial outer membranes as model systems. Wiley, New York, pp 343–376Google Scholar
  33. Smyth CJ, Johnson P, Olsson E, Söderlind O, Rosengren J, Hjerten S, Wadström T (1978) Differences in hydrophobic surface characteristics of porcine enteropathogenic Escherichia coli with or without K88 antigen as revealed by hydrophobic interaction chromatography. Infect Immun 22:462–472PubMedPubMedCentralGoogle Scholar
  34. Stenström TA (1988) Bacterial hydrophobicity, an overall parameter for the measurement of adhesion potential to soil particles. Appl Environ Microbiol 55:142–147Google Scholar
  35. Van Loosdrecht MCM, Lyklema J, Norde W, Zehnder AJB (1990) Influence of interfaces in microbial activities. Microbiol Rev 54:75–87PubMedPubMedCentralGoogle Scholar
  36. Verwej EJW, Overbeek JTG (1984) Theory of the stability of lyophobic colloids. Elsevier, AmsterdamGoogle Scholar
  37. Wood JM (1980) The interaction of micro-organisms with ion exchange resins. In: Berkeley RCW, Lynch JM (eds) Microbial adhesion to surfaces. Ellis Horwood Publishers, Chichester, pp 163–186Google Scholar
  38. ZoBell CE, Anderson CQ (1936) Observations on the multiplication of bacteria in different volumes of stored sea water and the influence of oxygen tension and solid surfaces. Biol Bull 71:324–342CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karin Gruber
    • 1
    • 2
  • Uwe B. Sleytr
    • 1
    • 2
  1. 1.Zentrum für UltrastrukturforschungUniversität für BodenkulturWienAustria
  2. 2.Ludwig Boltzmann Institut für UltrastrukturforschungUniversität für BodenkulturWienAustria

Personalised recommendations