Archives of Microbiology

, Volume 153, Issue 3, pp 276–281 | Cite as

Rhizocticin A, an antifungal phosphono-oligopeptide of Bacillus subtilis ATCC 6633: biological properties

  • Martin Kugler
  • Wolfgang Loeffler
  • Claudius Rapp
  • Armin Kern
  • Günther Jung
Original Papers


Rhizocticin A, the main component of the antifungal, hydrophilic phosphono-oligopeptides of Bacillus subtilis ATCC 6633, was used for sensitivity testing and experiments into the molecular mechanism of the antibiotic action. Budding and filamentous fungi as well as the cultivated nematode Caenorhabditis elegans were found to be sensitive, whereas bacteria and the protozoon Paramecium caudatum were insensitive. Rhizoctonia solani was inhibited in agar dilution tests but not in diffusion tests. The antifungal effect of rhizocticin A was neutralized by a variety of amino acids and oligopeptides. Oligopeptide influence was mainly understood as transport antagonism, and it was concluded that the antibiotic enters the recipeint cell via the peptide transport system. l- and d-cystine were also identified as potent, general antagonists of the oligopeptide transport. The rhizocticin-antagonism of four other amino acids was taken as a clue to the site of action. Provided that rhizocticin A is split by peptidases of the target cell into inactive l-arginine and toxic l-2-amino-5-phosphono-3-cis-pentenoic acid (l-APPA), the latter may interfere with the threonine or threonine-related metabolism.

Key words

Rhizocticins Phosphono-oligopeptide antibiotics Bacillus subtilis Antifungal spectrum Rhizocticin uptake Transport antagonism Mechanism of action 



(2-amino-5-phosphono-3-cis-pentenoic acid)








Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Besson F, Peypoux F, Michel G, Delcambe L (1978) Identification of antibiotics of iturin group in various strains of Bacillus subtilis. J Antibiot 31: 284–288Google Scholar
  2. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77: 71–94Google Scholar
  3. Diddens H, Zähner H, Kraas E, Göhring W, Jung G (1976) On the transport of tripeptide antibiotics in bacteria. Eur J Biochem 66: 11–23Google Scholar
  4. Ebata M, Miyazaki K, Takahashi T (1969) Studies on subsporin. 1. Isolation and characterization of subsporins A, B and C. J Antibiot 22: 467–472Google Scholar
  5. Eisele K (1975a) Sequenzvariationen an einem antibiotisch wirksamen Tripeptid. Z Naturforsch 30c: 541–543Google Scholar
  6. Eisele K (1975b) Antibiotisch wirksame Tripeptide der Sequenz l-Arg-d-X-l-Phe. Experientia 31: 764Google Scholar
  7. Gherna R, Nierman W, Pienta P (eds) (1985) Catalogue of bacteria, phages, rDNA vectors, 16th ed. American Type Culture Collection (ATCC), Rockville, MD, USAGoogle Scholar
  8. Jansen EF, Hirschmann DJ (1944) Subtilin — an antibacterial product of Bacillus subtilis. Culturing conditions and properties. Arch Biochem 4: 297–309Google Scholar
  9. König WA, Loeffler W, Meyer WH, Uhmann R (1973) l-Arginyl-d-allo-threonyl-l-phenylalanin, ein Aminosäure-Antagonist aus Keratinophyton terreum. Chem Ber 106: 816–819Google Scholar
  10. Landy M, Warren GH, Roseman SB, Colio LG (1948) Bacillomycin: an antibiotic from Bacillus subtilis active against pathogenic fungi. Proc Soc Exp Biol Med 67: 539–541Google Scholar
  11. Loeffler W (1970) Ein einfaches Verfahren zum Erkennen von Dermatophyten. In: Götz H, Rieth H, Male O, Turner J (eds) Diagnostik und Therapie der Pilzkrankheiten. Grosse, Berlin, pp 207–234Google Scholar
  12. Loeffler W (1972) Charakterisierung der Dermatophyten auf Grund ihres gruppenspezifischen Verhaltens gegen Antibiotika. Zbl Bakt Hyg 1. Abt Orig A 220: 247–251Google Scholar
  13. Michener HD, Snell N (1949) Two antifungal substances from Bacillus subtilis. Arch Biochem 22: 208–214Google Scholar
  14. Müller E, Loeffler W (1982) Mykologie, 4. Aufl. Thieme, Stuttgart New YorkGoogle Scholar
  15. Newton GFF (1949) Antibiotics from a strain of Bacillus subtilis: Bacilipins A and B and bacilysin. Brit J Exp Pathol 30: 306–319Google Scholar
  16. Nisbet TM, Payne JW (1979a) Specificity of peptide uptake in Saccharomyces cerevisiae and isolation of a bacilysin-resistant transport deficient mutant. FEMS Lett 7: 193–196Google Scholar
  17. Nisbet TM, Payne JW (1979b) Peptide uptake in Saccharomyces cerevisiae. Characteristics of a transport system shared by dipeptides and oligopeptides. J Gen Microbiol 115: 127–133Google Scholar
  18. Peypoux F, Pommier MT, Marion D, Ptak M, Das BC, Michel G (1986) Revised structure of mycosubtilin, a peptidolipid antibiotic from Bacillus subtilis. J Antibiot 31: 284–288Google Scholar
  19. Rapp C, Jung G, Katzer W, Loeffler W (1988a) Chlorotetain aus Bacillus subtilis, ein antifungisches Dipeptid mit einer ungewöhnlichen chlorhaltigen Aminosäure. Angew Chem 100: 1801–1802. Chlorotetain from Bacillus subtilis, an antifungal dipeptide with an unusual chlorine-containing amino acid. Angew Chem Internat Ed in Engl 27: 1733–1734Google Scholar
  20. Rapp C, Jung G, Kugler M, Loeffler W (1988b) Rhizocticins —new phosphono-oligopeptides with antifungal activity. Liebigs Ann Chem 1988: 655–661Google Scholar
  21. Walker JE, Abraham EP (1970) The structure of bacilysin and other products of Bacillus subtilis. Biochem J 118: 563–565Google Scholar
  22. Zähner H, Maas WK (1972) Biology of antibiotics. Springer, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Martin Kugler
    • 1
  • Wolfgang Loeffler
    • 1
  • Claudius Rapp
    • 2
  • Armin Kern
    • 2
  • Günther Jung
    • 2
  1. 1.Institut für Mikrobiologie I der Universität TübingenTübingenFederal Republic of Germany
  2. 2.Institut für Organische Chemie der Universität TübingenTübingenFederal Republic of Germany

Personalised recommendations