Advertisement

Archives of Microbiology

, Volume 153, Issue 3, pp 235–240 | Cite as

Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes

  • P. Simonet
  • P. Normand
  • A. Moiroud
  • R. Bardin
Original Papers

Abstract

A set of oligonucleotides has been developed to study the competitivity of two Frankia strains in the nodulation of the roots of two host plant species: Alnus glutinosa and Alnus incana. Two 20 mer-oligonucleotides, complementary to highly conserved sequences inside the nifH gene, were used as primers for the polymerase chain reaction (PCR) system in order to amplify microsymbiont DNA extracted from actinorhizae. PCR products were analyzed using two strain-specific 15-mer oligonucleotides identified in the amplified region. Hybridization data indicate that strain ACoN24d is more competitive than train ArI3 in the nodulation of both hosts.

Key words

Amplification Competitivity Frankia Hybridization NifNodulation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berry A, Torrey JG (1979) Isolation and characterization in vivo and in vitro of an actinomycetous endophyte from Alnus rubra Bong. In: Gordon JC, Wheeler CT, Perry DA (eds) Symbiotic nitrogen fixation in the management of temperate forests. Forests Research Laboratory, Oregon State University, Corvallis, pp 69–83Google Scholar
  2. Diem HG, Duhoux E, Simonet P, Dommergues YR (1988) Actinorhizal symbiosis biotechnology: The present and the future. In: Durand G, Bobichon L, Florent JL (eds) Proceedings of the 8th International Biotechnology Symposium, Paris, pp 984–995.Google Scholar
  3. Domenach AM, Kurdali F, Danière C, Bardin R (1987) Détermination de l'identité isotopique de l'azote fixé par le Frankia associé au genre Alnus. Can J Bot 66:1241–1247Google Scholar
  4. Cook AF, Vuocolo E, Brakel CL (1988) Synthesis and hybridization of a series of biotinylated oligonucleotides. Nucleic Acids Res 16:4077–4095Google Scholar
  5. Engelke DR, Hoener PA, Collins FS (1988) Direct sequencing of enzymatically amplified human genomic DNA. Proc Natl Acad Sci USA 85:544–548Google Scholar
  6. Lalonde M (1979) Technique and observations of the nitrogen fixing Alnus root nodule symbiosis. In: Subba Rao NS (eds) Recent advances in biological nitrogen fixation. Publication Oxford and IBM, New Delhi, pp 421–434Google Scholar
  7. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning, a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  8. Miller JM (1972) Experiments in molecular genetics. Cold Springer Harbor Laboratory, Cold Spring Harbor, New YorkGoogle Scholar
  9. Mullis KB, Faloona FA (1987) Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods Enzymol 155:335–350Google Scholar
  10. Nesme X, Normand P, Tremblay FM, Lalonde M (1985) Nodulation speed of Frankia sp. on Alnus glutinosa, Alnus crispa, and Myrica gale. Can J Bot 63:1292–1295Google Scholar
  11. Normand P, Bousquet J (1989) Phylogeny of nifH sequences in Frankia and in other nitrogen-fixing microorganisms. J Mol Evol (in press)Google Scholar
  12. Normand P, Simonet P, Bardin R (1988) Conservation of nif sequences in Frankia. Mol Gen Genet 213:238–246Google Scholar
  13. Olive DM, Atta AI, Setti SK (1988) Detection of toxigenic Escherichia coli using biotin-labelled probes following enzymatic amplification of the heat labile toxin gene. Molec Cell Probes 2:47–57Google Scholar
  14. Reddell P, Bowen GD (1985) Do single nodules of Casuarinaceae contain more than one Frankia strain? Plant Soil 88:275–279Google Scholar
  15. Saiki RK, Bugawan TL, Horn GT, Mullis KB, Erlich HA (1986) Analysis of enzymatically amplified B-globin and HLA-DQ& DNA with allele-specific oligonucleotide probes. Nature 324:163–166Google Scholar
  16. Saiki RK, Chang C-A, Levenson CH, Warren TC, Boehm CD, Kazazian HH, Erlich HA (1988) Diagnosis of sickle cell anemia and B-thalassemia with enzymatically amplified DNA and nonradioactive allele-specific oligonucleotide probes. N Engl J Med 319:537–541Google Scholar
  17. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitor. Proc Natl Acad Sci USA 74:5463–5467Google Scholar
  18. Simonet P, Capellano A, Navarro E, Bardin R, Moiroud A (1984) An improved method for lysis of Frankia with achromopeptidase, allows detection of new plasmids. Can J Microbiol 30:1292–1295Google Scholar
  19. Simonet P, Normand P, Moiroud A, Lalonde M (1985) Restriction enzyme digestion patterns of Frankia plasmids. Plant Soil 87:49–60Google Scholar
  20. Simonet P, Haurat J, Normand P, Bardin R, Moiroud A (1986) Localization of nif genes on a large plasmid in Frankia sp. strain ULQ0132105009. Mol Gen Genet 204:492–495Google Scholar
  21. Simonet P, Le NT, Teissier Du Cros E, Bardin R (1988) Identification of Frankia strains by direct DNA hybridization of crushed nodules. Appl Environ Microbiol 54:2500–2503Google Scholar
  22. Simonet P, Normand P, Hirsch AM, Akkermans ADL (1989) The genetics of the Frankia-symbiosis. CRC Press (in press).Google Scholar
  23. Wong C, Dowling CE, Saiki RK, Higuchi RG, Erlich HA, Kazazian HH (1987) Characterization of B-thalassaemia mutations using direct genomic sequencing of amplified single copy DNA. Nature 330:384–386Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • P. Simonet
    • 1
  • P. Normand
    • 2
  • A. Moiroud
    • 1
  • R. Bardin
    • 1
  1. 1.Laboratoire de Biologie des Sols, U. A. CNRS 697Université Lyon 1VilleurbanneFrance
  2. 2.Centre de Recherches en Biologie ForestièreUniversité LavalCanada

Personalised recommendations